细胞焦亡机制及其在多种肾脏病中的作用
孙晓怡1 姜玉勤1 唐余燕2 刘何晶1 陆迅3 魏明刚2
1.苏州大学附属第一医院肾内科,江苏苏州 215006;
2.苏州大学附属第一医院中医科,江苏苏州 215006;
3.江苏省苏州市立医院北区中医科,江苏苏州 215000
Mechanism of pyroptosis and its role in various kidney diseases#br#
SUN Xiaoyi1 JIANG Yuqin1 TANG Yuyan2 LIU Hejing1 LU Xun3 WEI Minggang2
1.Department of Nephrology, the First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou 215006, China;
2.Department of Traditional Chinese Medicine, the First Affiliated Hospital of Soochow University, Jiangsu Province, Suzhou 215006, China;
3.Department of Traditional Chinese Medicine, North District, Suzhou Municipal Hospital, Jiangsu Province, Suzhou 215000, China
摘要 细胞焦亡是近年新发现的一种促炎性程序性细胞死亡方式,可由炎症小体、半胱天冬酶-1、人半胱天冬酶-4/5、鼠半胱天冬酶-11及其下游反应因子gasdermin家族蛋白D(GSDMD)共同介导。当机体受到外来物质侵害时可启动细胞焦亡的上游反应原件,促使GSDMD结构改变,较多的GSDMD N端坏死域聚集后形成一种膜成孔活性物质引起细胞膜的损害,使炎症因子如白细胞介素-18(IL-18)及IL-1β等释放从而产生炎症反应。细胞焦亡机制在晶体相关性肾病、缺血再灌注肾损伤、糖尿病肾病及肾脏纤维化等方面均有所参与。本文针对细胞焦亡的具体机制及其在多种肾脏疾病发生发展中的作用进行综述。
关键词 :
细胞焦亡 ,
肾脏疾病 ,
NLRP3炎症小体
Abstract :Pyroptosis is a newly discovered method of pro-inflammatory programmed cell death in recent years, which can be caused by inflammasome, caspase-1, human caspase-4/5, and mouse caspase- 11, and its downstream response factor gasdermin D (GSDMD) co-mediated. When the body is invaded by foreign substances, it can initiate the upstream reaction element of pyroptosis, which promotes the structural change of GSDMD. After more GSDMD N-terminal necrotic domains accumulate to form a membrane pore-forming active substance that causes cell membrane damage and causes inflammatory factors, such as interleukin-18 (IL-18) and IL-1β are released to cause inflammation. The mechanism of pyroptosis is involved in crystal-related nephropathy, ischemia-reperfusion kidney injury, diabetic nephropathy, and renal fibrosis. This article will review the specific mechanism of pyroptosis and its role in the occurrence and development of a variety of kidney diseases.
Key words :
Pyroptosis
Kidney disease
NLRP3 inflammasome
基金资助: 国家自然科学基金资助项目(81673896);
江苏省苏州市科技局应用基础研究项目(SYSD2019205、SYSD2019210、SYS2020119)。
通讯作者:
魏明刚(1975.5-),男,博士,主任中医师;研究方向:中西医结合肾病。
作者简介 : 孙晓怡(1996.2-),女,苏州大学附属第一医院2019级肾内科学专业在读硕士研究生;研究方向:肾内科。
[1] 朱坤,戴日蕾,朱文婷,等.细胞焦亡与心血管疾病研究进展[J].基础医学与临床,2020,40(12):1711-1715.
[2] Xia WW,Li YY,Wu MY,et al. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation [J]. Cell Death Dis,2021,12(2):139.
[3] Wen Y,Pan MM,Lv LL,et al. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF-κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy [J]. J Cell Biochem,2019,120(3):4291-4300.
[4] Xiao C,Zhao H,Zhu H,et al. Tisp40 Induces Tubular Epithelial Cell GSDMD-Mediated Pyroptosis in Renal Ischemia-Reperfusion Injury via NF-κB Signaling [J]. Frontiers in physiology,2020,11:906.
[5] Xiong W,Meng XF,Zhang C. Auid-Orcid. Inflammasome activation in podocytes:a new mechanism of glomerular diseases [J]. Inflamm Res,2020,69(8):731-743.
[6] Kelley N,Jeltema D,Duan Y,et al. The NLRP3 Inflammasome:An Overview of Mechanisms of Activation and Regulation [J]. Int J Mol Sci,2019,20(13):3328.
[7] Feria MG,Taborda NA,Hernandez JC,et al. HIV replication is associated to inflammasomes activation,IL-1β,IL-18 and caspase-1 expression in GALT and peripheral blood [J]. PLoS One,2018,13(4):e0192845.
[8] 夏金婵,张小莉.NLRs炎症体在肺感染性疾病中的作用机制研究[J].中国中医药现代远程教育,2018,16(5):141-145.
[9] Gao P,Chen L,Fan L,et al. Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/caspase-1 inflammasome [J]. Vet Res,2020,51(1):53.
[10] Lim KH,Chen LC,Hsu K,et al. BAFF-driven NLRP3 inflammasome activation in B cells [J]. Cell Death Dis,2020,11(9):820.
[11] Bürgel PH,Marina CL,Saavedra PHV,et al. Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1β Inflammasome-Dependent Secretion [J]. Mediators Inflamm,2020,69:731-743.
[12] Liu L,Zhai K,Chen Y,et al. Effect and Mechanism of Mycobacterium tuberculosis Lipoprotein LpqH in NLRP3 Inflammasome Activation in Mouse Ana-1 Macrophage [J]. Biomed Res Int,2021,2021:8239135.
[13] Yao R,Chen Y,Hao H,et al. Pathogenic effects of inhibition of mTORC1/STAT3 axis facilitates Staphylococcus aureus-induced pyroptosis in human macrophages [J]. Cell Commun Signal,2020,18(1):187.
[14] Lu FF,Lan ZX,Xin ZQ,et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases [J]. J Cell Physiol,2020,235(4):3207-3221.
[15] Zhao Y,Shi J,Shao F. Inflammatory Caspases:Activation and Cleavage of Gasdermin-D In Vitro and During Pyroptosis [J]. Methods Mol Biol,2018,1714:131-148.
[16] 黄威,程忠平.GSDMD是细胞焦亡的关键蛋白[J].基础医学与临床,2019,39(6):895-898.
[17] 李丽莎,李燕京,白玉贤.Gasdermin家族调控肿瘤细胞焦亡的研究进展[J].中国肿瘤,2020,29(4):285-291.
[18] Kayagaki N,Warming S,Lamkanfi M,et al. Non-canonical inflammasome activation targets caspase-11 [J]. Nature,2011,479(7371):117-121.
[19] Yi YS. Caspase-11 Non-Canonical Inflammasome:Emerging Activator and Regulator of Infection-Mediated Inflammatory Responses [J]. Int J Mol Sci,2020,21(8):2736.
[20] Alshaikh AE,Hassan HA. Gut-kidney axis in oxalate homeostasis [J]. Curr Opin Nephrol Hypertens,2021,30(2):264-274.
[21] Sun Y,Liu Y,Guan X,et al. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome [J]. IUBMB Life,2020,72(5):1065-1074.
[22] 王虹,尹显华,胡水清.黄芪多糖对大鼠缺血再灌注急性肾损伤的保护作用及机制研究[J].中国免疫学杂志,2019,35(16):1966-1969,1975.
[23] Kataoka H,Saeki A,Hasebe A,et al. Naringenin suppresses Toll-like receptor 2-mediated inflammatory responses through inhibition of receptor clustering on lipid rafts [J]. Food Sci Nutr,2020,9(2):963-972.
[24] Chen F,Lu J,Yang X,et al. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects [J]. Biosci Rep,2020,40(2):BSR20193253.
[25] Li Y,Xia W,Wu M,et al. Activation of GSDMD contributes to acute kidney injury induced by cisplatin [J]. Am J Physiol Renal Physiol,2020,318(1):F96-F106.
[26] 李会芳.细胞焦亡与糖尿病肾病研究进展[J].世界最新医学信息文摘,2019,19(71):82-83,88.
[27] Jourdan T,Godlewski G,Cinar R,et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes [J]. Nat Med,2013,19(9):1132-1140.
[28] Sokolova M,Sahraoui A,Hoyem M,et al. NLRP3 inflammasome mediates oxidative stress-induced pancreatic islet dysfunction [J]. Am J Physiol Endocrinol Metab,2018,315(5):E912-E923.
[29] 尹归东,席一,魏祥,等.芪归益肾方对小鼠肾脏纤维化的延缓作用[J].中成药,2019,41(7):1515-1521.
[30] Kim SM,Kim YG,Kim DJ,et al. Inflammasome-Independent Role of NLRP3 Mediates Mitochondrial Regulation in Renal Injury [J]. Front Immunol,2018,9:2563.
[31] Gong W,Mao S,Yu J,et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy [J]. Am J Physiol Renal Physiol,2016,310(10):F1081-F1088.
[32] Seo JB,Choi YK,Woo HI,et al. Gemigliptin Attenuates Renal Fibrosis Through Down-Regulation of the NLRP3 Inflammasome [J]. Diabetes Metab J,2019,43(6):830-839.
[33] Wu M,Han W,Song S,et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice [J]. Mol Cell Endocrinol,2018,478:115-125.
[34] Guo H,Bi X,Zhou P,et al. NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease [J]. Mediators Inflamm,2017,2017:8316560.
[35] Zhang H,Wang Z. Effect and Regulation of the NLRP3 Inflammasome During Renal Fibrosis [J]. Front Cell Dev Biol,2020,7:379.
[1]
徐璐1 王贺2 岳珂1 魏珂1 解金红2 关怀敏2. 细胞焦亡在动脉粥样硬化中的作用及其研究进展 [J]. 中国医药导报, 2021, 18(31): 46-49.
[2]
芦俊 杨胜辉 赖娟 谢思健. 酸性鞘磷脂酶与肝肾相关疾病的研究进展 [J]. 中国医药导报, 2021, 18(16): 56-60.
[3]
韦婷艳1,2 杨杰3 曾宇婷4 黄绮亭4 刘钰君4. NLRP3炎症小体和氧化应激在新生儿缺氧缺血性脑病患者胎盘组织中的表达及其临床意义 [J]. 中国医药导报, 2020, 17(8): 17-20.
[4]
蔡树梅1 王亚敏1 陈辉2 孟圆圆1 邹昌军1 李燕1▲ 张金玲1. 胎膜早破患者绒毛膜羊膜炎的发生情况及NLRP3炎症小体表达与炎症因子、蛋白酶的相关性 [J]. 中国医药导报, 2020, 17(6): 107-110.
[5]
李冀 苑通 付强 高彦宇. 参芪地黄汤加减在肾脏疾病中的临床应用 [J]. 中国医药导报, 2020, 17(6): 136-139.
[6]
赵宁 朱国贞. 肾损伤分子-1与肾脏疾病的研究进展 [J]. 中国医药导报, 2020, 17(33): 53-56.
[7]
张梁 李婧. 细胞焦亡与PCSK9在动脉粥样硬化中的研究进展 [J]. 中国医药导报, 2020, 17(21): 54-57.
[8]
李华章1 李志坚2. Caspase-1在眼科疾病中的研究进展 [J]. 中国医药导报, 2020, 17(19): 35-37.
[9]
陈鹏1 王小琴2 王岚2,3 吴文静2,3 龙思洁1. 尿微量蛋白联合检测对慢性肾病早期肾损伤诊断的临床应用价值 [J]. 中国医药导报, 2019, 16(29): 118-123.
[10]
郝永哲1 程文俊2. 高血压早期肾损害的研究进展 [J]. 中国医药导报, 2017, 14(27): 56-61.