Basic research on potential substances of Zukamu Granules for treatment of corona virus disease 2019
FAN Chenyang1 MA Xuan1,2 JI Zhihong1 LI Keao1 LI Zhijian3
1.Department of Research and Development, Xinjiang Cimu Pharmaceutical Research Institute (Co., LTD.), Xinjiang Uygur Autonomous Region, Urumqi 830011, China;
2.School of Pharmacy, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China;
3.Department of Toxicology Laboratory, Xinjiang Institute of Traditional Uyghur Medicine, Xinjiang Uygur Autonomous Region, Urumqi 830049, China
Abstract:Objective To explore the potential material basis of Zukamu Granules in the treatment of corona virus disease 2019 (COVID-19) through network pharmacology and molecular docking techniques. Methods The chemical constituents and targets of ten medicinal herbs in Zukamu Granules were retrieved from China national knowledge infrastructure and traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database. GeneCards and NCBI databases were used to obtain the COVID-19 targets, the corresponding Genes of the targets were searched in the UniProt database, Cytoscape3.7.2 was used to construct the network of herb-ingredient-target-disease, and the gene ontology (GO) enrichment analysis and kyoto encyclopedia of genes and genomes pathway (KEGG) pathway analysis were performed on the targets using the Bioconductor biological information software package. The predicted core ingredients were docking with the novel coronavirus 3CL hydrolase (SARS-CoV-2 3CL hydrolase) and the angiotensin converting enzyme Ⅱ (ACE2) respectively. Results The herb-ingredient-target-disease network consisted of 114 ingredients and 50 targets. There were 1876 items obtained by GO enrichment analysis (P ≤ 0.05), including 1754 biological process, 33 cell components and 89 molecular functions. There were 155 signal pathways obtained by KEGG pathway analysis (P ≤ 0.05). The binding energies of quercetin, kaempferol, luteolin and other components in the Zukamu Granules with SARS-COV-2 3CL hydrolase and ACE2 enzyme were all less than -5.0 kJ/mol. Conclusion Quercetin, kaempferol, luteolin and other components in Zukamu Granules can act on multiple signaling pathways by binding with SARS-CoV-2 3CL hydrolase and ACE2 enzyme, thus playing a therapeutic role on COVID-19.
范晨阳1 马璇1,2 季志红1 李柯翱1 李治建3. 祖卡木颗粒治疗新型冠状病毒肺炎的潜在物质基础研究[J]. 中国医药导报, 2021, 18(3): 9-16.
FAN Chenyang1 MA Xuan1,2 JI Zhihong1 LI Keao1 LI Zhijian3. Basic research on potential substances of Zukamu Granules for treatment of corona virus disease 2019. 中国医药导报, 2021, 18(3): 9-16.
[1] 国家卫生健康委员会,国家中医药管理局.新型冠状病毒肺炎诊疗方案(试行第三版)[S]. http://www.nhc.gov.cn/xcs/zhengcwj/202001/f492c9153ea9437bb587ce2ffcbee1fa.shtml.
[2] 国家卫生健康委员会,国家中医药管理局.新型冠状病毒肺炎诊疗方案(试行第七版)[J].江苏中医药,2020,52(4):1-6.
[3] 郑文科,张俊华,杨丰文,等.中医药防治新型冠状病毒肺炎各地诊疗方案综合分析[J].中医杂志,2020,2(61)277-280.
[4] 新疆维吾尔自治区卫生健康委员会.新疆维吾尔自治区新型冠状病毒感染的肺炎维吾尔医药防治方案[S]. http://www.xjfpc.gov.cn/info/2074/17768.htm,2020-01-30.
[5] 黄先菊,敖舟,佟海英,等.新型冠状病毒肺炎的少数民族医药辨证治疗方案现状初析[J].中南民族大学学报:自然科学版,2020,39(2):139-144.
[6] 李际强,王怀振,买买提艾力·吐尔逊,等.四种维药对常见呼吸道病毒作用的体外实验研究[J].中国民族医药杂志,2012,18(9):38-40.
[7] 余通,冯芸,张东宁,等.基于Meta分析的维药祖卡木颗粒治疗上呼吸道感染临床评价研究[J].药物流行病学杂志,2018,27(2):73-77,84.
[8] Xu X,Chen P,Wang J,et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission [J]. Sci China Life Sci,2020,63(3):457-460.
[9] Li F,Li WH,Farzan M,et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor [J]. Science,2005,309(5742):1864-1868.
[10] 边葶苈,周继勇,廖敏.冠状病毒非结构蛋白的研究进展[J].中国动物传染病学报,2013,21(4):67-74.
[11] 曲章义,侯咏,刘佳,等.冠状病毒及其基因表达[J].哈尔滨医科大学学报,2003,37(4):368-370.
[12] 李聪,胡强,张燕翔,等.槲皮素的药理学活性研究进展[J].湖北中医杂志,2018,40(6): 63-66.
[13] 刘萍,唐富山,朱艳,等.槲皮素对PM2.5导致支气管上皮细胞炎症的保护作用[J].中药药理与临床,2017,33(1):22-26.
[14] 万巧凤,吴莉,杨美玲,等.槲皮素对甲型H1N1流感病毒诱导的A549细胞凋亡效应酶Caspase-3的影响[J].中国中医药信息杂志,2011,18(10):42-44.
[15] Tsai MS,Wang YH,Lai YY,et al. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation,UGT1A1 activation,and attenuation of oxidative stress,inflammation and apoptosis in mice [J]. Toxicol Lett,2018,290:97-109. doi:10.1016/j. toxlet.2018.03.024.
[16] Lin MK,Yu YL,Chen KC,et al. Kaempferol from Semen cuscutae attenuates the immune function of dendritic cells [J]. Immunobiology,2011,216(10):1103-1109. doi:10.1016/j.imbio.2011.05.002.
[17] Basu A,Das AS,Sharma M,et al. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema [J]. Biochem Biophy Rep,2017,12:54-61. doi:10.1016/j.bbrep.2017. 08.005.
[18] 孟珊珊,吕芳芳,胡晓光,等.柚皮素对RSV A2株感染引起气道黏液高分泌的抑制作用[J].温州医科大学学报,2015,45(9):631-635.
[19] 邓东沅.木犀草素对流感病毒H1N1感染A549细胞的作用及免疫调节机制的研究[D].北京:北京中医药大学,2017.
[20] Akanda MR,Uddin MN,Kim IS,et al. The biological and pharmacological roles of polyphenol flavonoid tilianin [J]. Eur J Pharmacol,2019,842:291-297.
[21] Hong JJ,Choi JH,Oh SR,et al. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa [J]. FEBS Lett,2001,495(3):142-147.
[22] Nam KW,Kim J,Hong JJ,et al. Inhibition of cytokine-induced IκB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice [J]. Atherosclerosis,2005,180(1):27-35.
[23] 赵虹,蒋江涛,郑秋生.甘草查耳酮A药理作用研究进展[J].中国中药杂志,2013,38(22):3814-3818.
[24] 李牧,杜智敏.芦荟大黄素的药理作用研究进展[J].中国临床药理学杂志,2015,31(9):765-768.
[25] Yang M,Li L,Heo SM,et al. Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways [J]. Biomol Ther (Seoul),2016,24(4):395-401.
[26] Panteva M,Korkaya H,Jameel S. Hepatitis viruses and the MAPK pathway:Is this a survival strategy? [J]. Virus Res,2003,92(2):131-140.
[27] 赵叶,杨金华,韩君萍,等.MEK/ERK通路参与支气管哮喘发病机制的研究进展[J].中华中医药学刊,2017, 35(2):329-331.
[28] Bettelli E,Dastrange M,Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells [J]. Proc Nat Acad Sci U S A,2005, 102(14):5138-5143.
[29] Kang SW,Wahl MI,Chu J,et al. PKCbeta modulates antigen receptor signaling via regulation of Btk membrane localization [J]. EMBO J,2001,20(20):5692-5702.
[30] Wan S,Yi Q,Fan S,et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia(NCP)[J]. medRxiv,2020. doi: 10.1101/2020.02.10.20021832.
[31] Kaur S,Bansal Y,Kumar R,et al. A panoramic review of IL-6:Structure,pathophysiological roles and inhibitors [J]. Bioorg Med Chem,2020,25(8):115327. doi:10.1016/j.bmc.2020.115327.
[32] Wendt T,Tanji N,Guo J,et al. Glucose,glycation,and RAGE:Implications for amplification of cellular dysfunction in diabetic nephropathy [J]. J Am SocNephrol,2003, 14(5):1383-1395.