Study on the value of gene chip technology in the case of thickening of the neck transparent layer
DING Xiaorui1* LIU Aiju2*▲ ZHANG Wei1 ZHANG Junhui2
1.Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot 010000, China;
2.Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot 010000, China
Abstract:Objective To explore clinical application value of chromosome microarray analysis (CMA) in the thickening of nuchal translucency (NT) and the difference of detection of copy number variants (CNVs). Methods A retrospective analysis was conducted from December 2017 to December 2019. Ultrasound prompted “thickening of the transparent layer of the fetal neck”. A karyotype analysis and CMA chip detection of 185 pregnant women with singletons were performed at Maternal and Child Health Hospital of Inner Mongolia Autonomous Region. Results CMA test results: a total of 185 cases of NT thickening, 59 cases with chromosomal abnormalities, the incidence rate of chromosomal abnormalities was 31.89%(59/185). Compared with karyotype analysis, the detection rate of CNVs increased by 10.81%(20/185), and the detection rate of pathogenic CNVs increased by 7.03%(13/185). Chromosome karyotype analysis results: a total of 185 cases of NT thickening, 39 cases with abnormal karyotypes, the incidence rate of chromosomal abnormalities was 21.08%(39/185). There were two cases with abnormal chromosome structure: one case of 46, XN, del (18) (P11) and 18p11.32p11.2 deletion in CMA was 14.94 Mb, P was the same case. One case of 46, XN, t (15; 17) (Q15; q25) [4]/46, XN [122], CMA was 46, XN. Conclusion Compared with karyotype analysis technology, CMA technology has the advantage of high genome-wide resolution of CMA technology. It can increase the detection rate of microdeletions/microduplications and the detection rate of pathogenic CNVs. Unable to recognize balanced rearrangements (translocation/inversion/insertion), CMA technology can not replace karyotype analysis technology for diagnosis. The existence of unclear clinical significance (VOUS) of CMA detection will bring difficulties to the interpretation of CMA.
丁小瑞1* 刘爱菊2*▲ 张玮1 张俊绘2. 基因芯片技术应用于颈项透明层增厚病例中的价值研究[J]. 中国医药导报, 2020, 17(36): 114-118.
DING Xiaorui1* LIU Aiju2*▲ ZHANG Wei1 ZHANG Junhui2. Study on the value of gene chip technology in the case of thickening of the neck transparent layer. 中国医药导报, 2020, 17(36): 114-118.
[1] 金莉萍,杨丽君,徐岩英,等.国家自然科学基金资助对中国出生缺陷相关研究发展的作用[J].中华妇产科杂志,2014,49(4):306-308.
[2] 梁玥宏,任晨春,王文靖,等.1544例妊娠中期孕妇羊水细胞染色体核型分析[J].中国妇幼保健,2015,30(8):1208-1210.
[3] 王芳芳,王超,刘羽,等.225例产前诊断指征及胎儿异常染色体核型分析[J].中国优生与遗传杂志,2018,26(2):38-40.
[4] 黄宁,刘艳秋,袁慧珍,等.75例唐氏综合征胎儿的产前诊断分析[J].国际检验医学杂志,2016,37(33):387-389.
[5] 朱莉,邹佳利.中孕期超声筛查胎儿染色体异常软指标的临床应用价值[J].临床医药文献电子杂志,2020,7(38):130.
[6] 李载红,洪燕,覃伶伶,等.超声检査颈项透明层增厚在胎儿染色体异常诊断中的应用价值[J].实用医学杂志,2016,32(3):402-405.
[7] 刘向娇,王丽敏,陈丹,等.5DNT技术与二维超声在孕11~13+6周测量胎儿NT值中的比较[J].广东医学,2016, 37(13):1984-1986.
[8] Leung TY,Vogel I,Lau TK,et al. Identification of submicroscopic chromosomal aberrations in fetuses with increased nuchal translucency and apparently normal karyotype [J]. Ultrasound Obstet Gynecol,2011,38(3):314-319.
[9] 施炜慧,李淑元,徐晨明,等.产前诊断技术在临床中的应用[J].中国临床医生杂志,2017,45(6):1-4.
[10] 袁海明,朱钧萍,邓小燕,等.染色体微阵列技术在2000例儿科患者中的应用[J].中华医学遗传学杂志,2016,33(2):247-251.
[11] Sinkey RG,Odibo AO. Cost-effectiveness of old and new technologies for aneuploidy screening [J]. Clin Lab Med,2016,36(2):237-248.
[12] 孙丽娟,王欣,吴青青,等.超声检查胎儿颈项透明层厚度在筛查胎儿染色体异常中的价值[J].中华妇产科杂志,2013,48(11):819-823.
[13] Zheng Y,Wan S,Dang Y,et al. Non-invasive prenatal testing for detection of trisomy 13,18,21 and sex chromosome aneuploidies in 8594 cases [J]. Gine Kol Pol,2019,90(5):270-273.
[14] Dugoff L,Norton ME,Kuller JA. The use of chromosomal microarray for prenatal diagnoss [J]. Am J Obstet Gynecol,2016,215(4):2-9.
[15] 李晓丽,张安红.颈项透明层增厚用于围产期胎儿染色体异常筛查的价值分析[J].中国社区医师,2019,35(33):126-129.
[16] 郑茸娅,宋利娜.孕早期超声检测胎儿颈项透明层增厚的临床价值[J].临床医学研究与实践,2020,5(1):24-26.
[17] 杨鑫,符芳,李茹,等.染色体微阵列分析在核型正常的颈项透明层增厚胎儿中的应用[J].中华医学遗传学杂志,2015,32(3):370-374.
[18] Konialis C,Pangalos C. Dilemmas in prenatal chromosomal diagnosis revealed through a single center’s 30 years' experience and 90000 cases [J]. Fetal Diagn Ther,2015,38(3):218-232.
[19] Lund IC,Christensen R,Petersen OB,et al. Chromosomal microarray in fetuses with increased nuchal translucency [J]. Ultrasound Obstet Gynecol,2015,45(1):95-100.
[20] Grande M,Jansen FA,Blumenfeld YJ,et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype:a systematic review and meta-analysis [J]. Ultrasound Obstet Gynecol,2015,46(6):650-658.
[21] Wu X,An G,Xie X,et al. Chromosomal microarray analysis for pregnancies with or without ultrasound abnormalities in women of advanced maternal age [J]. J Clin Lab Anal,2020,34(4):e23117.
[22] Redin C,Brand H,Collins RL,et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies [J]. Nat Genet,2017, 49(1):36-45.