Relationship between amyloid β-protein and Alzheimer′s disease and the research progress of acupuncture intervention
LIANG Peizhe YANG Sha SHEN Yan ZHANG Baoyu WANG Shu
Institute of Acupuncture and Moxibustion, the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine National Clinical Medical Research Center of Traditional Chinese Acupuncture and Moxibustion Key Laboratory of Acupuncture Therapy for Encephalopathy, National Administration of Traditional Chinese Medicine Tianjin Key Laboratory of Acupuncture and Moxibustion Science, Tianjin 300381, China
Abstract:Alzheimer′s disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and memory loss. Amyloid β-protein (Aβ) is the initiating factor that triggers the course of AD, and a potential intervention for the treatment of AD is to reduce the deposition of Aβ in the brain. This paper summarizes the generation and cleanup of Aβ, and the relationship between Aβ and AD, and reviews the basic research on the regulation of Aβ by acupuncture in the treatment of AD. It is found that acupuncture can reduce the production of Aβ, promote the cleanup of Aβ by regulating Aβ-degrading enzyme and microglia-related factors, and improve the transport ability of the blood-brain barrier to Aβ and other pathways, and promote the dearance of Aβ. At the same time, the future research trends are prospected to provide new ideas for disease research.
梁沛哲 杨沙 沈燕 张宝瑜 王舒. β淀粉样蛋白与阿尔茨海默病的关系及针刺干预研究进展[J]. 中国医药导报, 2020, 17(28): 56-59.
LIANG Peizhe YANG Sha SHEN Yan ZHANG Baoyu WANG Shu. Relationship between amyloid β-protein and Alzheimer′s disease and the research progress of acupuncture intervention. 中国医药导报, 2020, 17(28): 56-59.
[1] Ittner LM,G?觟tz J. Amyloid-β and tau--a toxic pas de deux in Alzheimer′s disease [J]. Nat Rev Neurosci,2011, 12(2):65-72.
[2] Dekker AD,Vermeiren Y,Carmona-Iragui M,et al. Monoaminergic impairment in Down syndrome with Alzheimer′s disease compared to early-onset Alzheimer′s disease [J]. Alzheimers Dement(Amst),2017,10:99-111.
[3] Baranello RJ,Bharani KL,Padmaraju V,et al. Amyloid-beta protein clearance and degradation (ABCD)pathways and their role in Alzheimer's disease [J]. Curr Alzheimer Res,2015,12(1):32-46.
[4] Karran E,Mercken M,De Strooper B. The amyloid cascade hypothesis for Alzheimer′s disease:an appraisal for the development of therapeutics [J]. Nat Rev Drug Discov,2011,10(9):698-712.
[5] Masoumi J,Abbasloui M,Parvan R,et al. Apelin,a promising target for Alzheimer disease prevention and treatment [J]. Neuropeptides,2018,70:76-86.
[6] Rosenberg PB,Lyketsos CG. New Clues to Preclinical Alzheimer′s Disease [J]. Am J Psychiatry,2018,175(6):493-494.
[7] Tang Y,Scott DA,Das U,et al. Early and selective impairments in axonal transport kinetics of synaptic cargoes induced by soluble amyloid beta-protein oligomers [J]. Traffic,2012,13(5):681-693.
[8] Palmer BW,Ryan KA,Kim HM,et al. Neuropsychological correlates of capacity determinations in Alzheimer disease: implications for assessment [J]. Am J Geriatr Psychiatry,2013,21(4):373-381.
[9] Mitka M. PET imaging for Alzheimer disease:are its benefits worth the cost? [J]. JAMA,2013,309(11):1099-1100.
[10] Sadigh-Eteghad S,Sabermarouf B,Majdi A,et al. Amyloid-beta:a crucial factor in Alzheimer′s disease [J]. Med Princ Pract,2015,24(1):1-10.
[11] Becker M,Moore A,Naughton M,et al. Neprilysin degrades murine Amyloid-β (Aβ) more efficiently than human Aβ: Further implication for species-specific amyloid accumulation [J]. Neurosci Lett,2018,686:74-79.
[12] Klein C,Roussel G,Brun S,et al. 5-HIAA induces neprilysin to ameliorate pathophysiology and symptoms in a mouse model for Alzheimer′s disease [J]. Acta Neuropathol Commun,2018,6(1):136.
[13] Grimm MO,Mett J,Stahlmann CP,et al. Neprilysin and Abeta Clearance:Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer′s Disease [J]. Front Aging Neurosci,2013,5:98.
[14] Wang L,Shi FX,Xu WQ,et al. The Down-Expression of ACE and IDE Exacerbates Exogenous Amyloid-beta Neurotoxicity in CB2R(-/-)Mice [J]. J Alzheimers Dis,2018,64(3):957-971.
[15] Del Campo M,Stargardt A,Veerhuis R,et al. Accumulation of BRI2-BRICHOS ectodomain correlates with a decreased clearance of Abeta by insulin degrading enzyme(IDE)in Alzheimer′s disease [J]. Neurosci Lett,2015, 589:47-51.
[16] Zhao R,Ying M,Gu S,et al. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-kappa B Pathway [J]. Neuroscience,2019,422:99-118.
[17] Huang M,Li Y,Wu K,et al. Paraquat modulates microglia M1/M2 polarization via activation of TLR4-mediated NF-kappa B signaling pathway [J]. Chem Biol Interact,2019,310:108743.
[18] Tang Y,Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases [J]. Mol Neurobiol,2016, 53(2):1181-1194.
[19] Krabbe G,Halle A,Matyash V,et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology [J]. PLoS One,2013,8(4):e60921.
[20] Storck SE,Hartz AMS,Bernard J,et al. The concerted amyloid-beta clearance of LRP1 and ABCB1/P-gp across the blood-brain barrier is linked by PICALM [J]. Brain Behav Immun,2018,73:21-33.
[21] Verheggen ICM,Van Boxtel MPJ,Verhey FRJ,et al. Interaction between blood-brain barrier and glymphatic system in solute clearance [J]. Neurosci Biobehav Rev,2018,90:26-33.
[22] Fang F,Yu Q,Arancio O,et al. RAGE mediates Abeta accumulation in a mouse model of Alzheimer′s disease via modulation of beta- and gamma-secretase activity [J]. Hum Mol Genet,2018,27(6):1002-1014.
[23] Paudel YN,Angelopoulou E,Piperi C,et al. Impact of HMGB1,RAGE,and TLR4 in Alzheimer′s Disease(AD):From Risk Factors to Therapeutic Targeting [J]. Cells,2020,9(2):383.
[24] Iliff JJ,Wang M,Liao Y,et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes,including amyloid beta [J]. Sci Transl Med,2012,4(147):147ra111.
[25] Smith AJ, Verkman AS. The “glymphatic” mechanism for solute clearance in Alzheimer′s disease:game changer or unproven speculation? [J]. FASEB J,2018,32(2):543-551.
[26] Xu Z,Xiao N,Chen Y,et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits [J]. Mol Neurodegener,2015,10:58.
[27] Kress BT,Iliff JJ,Xia M,et al. Impairment of paravascular clearance pathways in the aging brain [J]. Ann Neurol,2014,76(6):845-861.
[28] Zeppenfeld DM,Simon M,Haswell JD,et al. Association of Perivascular Localization of Aquaporin-4 With Cognition and Alzheimer Disease in Aging Brains [J]. JAMA Neurol,2017,74(1):91-99.
[29] 邵淑君,邬继红,唐银杉,等.督脉电针对APP/PS1双转基因痴呆小鼠皮层细胞形态及APP、BACE1蛋白表达的影响[J].针灸临床杂志,2019,35(8):75-79.
[30] 郎尉雅,张海燕,刘忠锦.电针对SAMP8小鼠行为学及APP mRNA和BACE-1 mRNA影响[J].中国临床解剖学杂志,2015,33(5):563-567.
[31] 王鑫,朴赞勋,周源,等.电针对SAMP8小鼠行为学和ADAM10、ADAM17在大脑皮层表达的影响[J].中华中医药杂志,2016,31(10):4006-4010.
[32] 李广诚,龙聪,朱宏,等.针刺对SAMP8小鼠海马Flotillin-1、NEP及Aβ42表达的影响[J].上海针灸杂志,2017,36(11):1356-1360.
[33] 许安萍,李志刚,唐银杉,等.音乐电针对SAMP8小鼠行为学及大脑皮层NEP、IDE表达的影响[J].中医药信息,2014,31(2):40-43.
[34] Du YJ,Tang S,Xiao JH,et al. Influence of electroacupuncture therapy of tonifying the kidney and regulating governor vessel on Aβ related degradation enzymes in the hippocampus of a rat model of Alzheimer′s disease induced by Aβ1-42 [J]. World Journal of Acupuncture-Moxibustion,2018,28(3):185-190,232-233.
[35] 陈轩,王永红.小胶质细胞与神经系统发育和阿尔茨海默病的关系[J].重庆医科大学学报,2017,42(6):755-758.
[36] 邵千枫,李昱颉,曹瑾,等.“通督启神”法两种电针对APP/PS1小鼠额叶皮层小胶质细胞TNF-α表达的影响[J].世界科学技术-中医药现代化,2016,18(8):1327-1333.
[37] 赵江豪,姚海江,王远征,等.不同电针法对APP/PS1小鼠海马高迁移率族蛋白B1和白细胞介素-10表达的影响[J].中国康复理论与实践,2018,24(1):17-22.
[38] 李芙,李丽娜,王鑫,等.电针“百会”“涌泉”对APP/PS 1双转基因小鼠海马β淀粉样蛋白及低密度脂蛋白受体相关蛋白-1水平的影响[J]. 针刺研究,2015,40(1):30-34,55.
[39] 王鑫,加吾拉·阿不力孜,李芙,等.电针对APP/PS1双转基因小鼠行为学及皮层Aβ1-42、LRP1表达的影响[J].中华中医药杂志,2015,30(5):1513-1518.
[40] 薛卫国,张忠,许红,等.电针对淀粉样前体蛋白转基因小鼠海马微血管淀粉样沉积的影响及其与低密度脂蛋白相关受体1的关系[J].针刺研究,2011,36(2):95-100.
[41] 杨之雪,唐成林,李小宏,等.电针调控SAMP8小鼠血脑屏障增强盐酸多奈哌齐对Aβ清除效果的机制研究[J].针刺研究:1-9[2020-03-02]. https://doi.org/10.13702/j.1000-0607.190081.
[42] 许安萍.督脉不同电针对拟AD模型-SAMP8小鼠额叶Aβ代谢途径的影响[D].北京:北京中医药大学,2014.