野百合碱诱导肺动脉高压模型的机制研究及潜在临床应用价值进展
程筱涵1 齐靖2 白玉华1 郑晓东2
1.哈尔滨医科大学(大庆)药学院,黑龙江大庆 163319;
2.哈尔滨医科大学(大庆)基础医学院,黑龙江大庆 163319
Advanced mechanisms and potential clinical application value of monocrotaline-induced pulmonary artery hypertension animal model
CHENG Xiaohan1 QI Jing2 BAI Yuhua1 ZHENG Xiaodong2
1.College of Pharmacy, Harbin Medical University(Daqing), Heilongjiang Province, Daqing 163319, China;
2.College of Basic Medical Sciences, Harbin Medical University (Daqing), Heilongjiang Province, Daqing 163319, China
摘要 肺动脉高压(PAH)是以肺动脉压力和肺血管阻力升高为特征的致死性心血管疾病。野百合碱(MCT)引起的PAH病理特征和临床患者十分相似。MCT可以通过炎症反应、内皮途径以及调节肺动脉平滑肌细胞的增殖等因素诱导PAH的发生。因此本文对近几年MCT诱导PAH动物模型的作用机制以及在PAH新治疗药物靶点筛选中的应用进行简要综述。
关键词 :
肺动脉高压 ,
野百合碱 ,
信号通路 ,
药物靶点
Abstract :Pulmonary artery hypertension (PAH) is a fatal cardiovascular disease characterized by increases in pulmonary artery pressure and pulmonary vascular resistance. The pathological features of PAH induced by monocrotaline (MCT) are similar to those of clinical patients. MCT-induced PAH through multiple factors including inflammatory response, endothelium pathway, and regulation of pulmonary artery smooth muscle cells proliferation, et al. Therefore, this article briefly reviews the advances molecular mechanism of the MCT-induced PAH and the exploration in the novel therapeutic targets by using this animal model in recent years.
Key words :
Pulmonary arterial hypertension
Monocrotaline
Signal pathway
Drug target
基金资助: 国家自然科学基金资助项目(31500936);
黑龙江省自然科学基金项目(C2017042);
中央支持地方高校发展人才培养支持计划-优秀青年人才支持项目。
通讯作者:
白玉华(1970.2-),女,博士,教授;研究方向:中药有效成分及中药药理研究。
郑晓东(1983.9-),男,博士,副教授,哈尔滨医科大学大庆校区基础医学院院长;研究方向:血管疾病新细胞分子靶点和转化医学。
作者简介 : 程筱涵(1995.6-),女,哈尔滨医科大学大庆校区2017级药物化学专业在读硕士研究生;研究方向:中药有效成分及中药药理研究。
[1] Simonneau G,Montani D,Celermajer DS,et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension [J]. Eur Respir J,2019,53(1):1801913.
[2] Bordenave J,Tu L,Savale L,et al. New insights in the pathogenesis of pulmonary arterial hypertension [J]. Rev Mal Respir,2019,36(4):433-437.
[3] Koudstaal T,Boomars KA,Kool M. Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: An Immunological Perspective [J]. J Clin Med,2020,9(2):561-582.
[4] 马美玲,刘文东,王芳.肺动脉高压药物的临床应用及市场现状[J].中国新药杂志,2017,26(19):2245-2250.
[5] Bueno-Beti C,Sassi Y,Hajjar RJ,et al. Pulmonary Artery Hypertension Model in Rats by Monocrotaline Administration [J]. Methods Mol Biol,2018,1816:233-241.
[6] Durham GA,Palmer TM. Is there a role for prostanoid-mediated inhibition of IL-6 trans-signalling in the management of pulmonary arterial hypertension?[J]. Biochem Soc Trans,2019,47(4):1143-1156.
[7] Pang Y,Liang MT,Gong Y,et al. HGF Reduces Disease Severity and Inflammation by Attenuating the NF-kappaB Signaling in a Rat Model of Pulmonary Artery Hypertension [J]. Inflammation,2018,41(3):924-931.
[8] Gao L,Liu J,Hao Y,et al. Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB/p38 pathway [J]. Iran J Basic Med Sci,2018,21(3):244-252.
[9] Chen F,Wang H,Zhao J,et al. Grape seed proanthocyanidin inhibits monocrotaline-induced pulmonary arterial hypertension via attenuating inflammation:in vivo and in vitro studies [J]. J Nutr Biochem,2019,67:72-77.
[10] Chen F,Wang H,Yan J,et al. Grape seed proanthocyanidin reverses pulmonary vascular remodeling in monocrotaline-induced pulmonary arterial hypertension by down-regulating HSP70 [J]. Biomed Pharmacother,2018, 101:123-128.
[11] Shi R,Zhu D,Wei Z,et al. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition [J]. Life Sci,2018,207:442-450.
[12] Avecilla V. Effect of Transcriptional Regulator ID3 on Pulmonary Arterial Hypertension and Hereditary Hemorrhagic Telangiectasia [J]. Int J Vasc Med,2019,2019:2123906.
[13] Dannewitz Prosseda S,Tian X,Kuramoto K,et al. FHIT,a Novel Modifier Gene in Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2019,199(1):83-98.
[14] Zhang C,Wang P,Mohammed A,et al. Function of Adipose-Derived Mesenchymal Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension through miR-191 via Regulation of BMPR2 [J]. Biomed Res Int,2019,2019:2858750.
[15] Chen YC,Yuan TY,Zhang HF,et al. Salvianolic acid A attenuates vascular remodeling in a pulmonary arterial hypertension rat model [J]. Acta Pharmacol Sin,2016,37(6):772-782.
[16] Cheng G,Wang X,Li Y,et al. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling [J]. Stem Cell Res Ther,2017,8(1):34-44.
[17] Abdul-Salam VB,Russomanno G,Chien-Nien C,et al. PDE5/Arf6 Pathway [J]. Circ Res,2019,124(1):52-65.
[18] Yu X,Zhao X,Zhang J,et al. Dacomitinib,a new pan-EGFR inhibitor, is effective in attenuating pulmonary vascular remodeling and pulmonary hypertension [J]. Eur J Pharmacol,2019,850:97-108.
[19] Chang H,Chang CY,Lee HJ,et al. Magnolol ameliorates pneumonectomy and monocrotaline-induced pulmonary arterial hypertension in rats through inhibition of angiotensinⅡand endothelin-1 expression [J]. Phytomedicine,2018,51:205-213.
[20] Hsu WL,Lin YC,Jeng JR,et al. Baicalein Ameliorates Pulmonary Arterial Hypertension Caused by Monocrotaline through Downregulation of ET-1 and ETAR in Pneumonectomized Rats [J]. Am J Chin Med,2018,46(4):769-783.
[21] Zhu Y,Wu Y,Shi W,et al. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling [J]. Life Sci,2017,173(Complete):36-42.
[22] Wang G,Ma N,Meng L,et al. Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation [J]. Mol Cell Biochem,2015, 410(1/2):207-213.
[23] Lee MY,Tsai KB,Hsu JH,et al. Liraglutide prevents and reverses monocrotaline-induced pulmonary arterial hypertension by suppressing ET-1 and enhancing eNOS/sGC/PKG pathways [J]. Sci Rep,2016,6:31788.
[24] Li LS,Luo YM,Liu J,et al. Icariin Inhibits Pulmonary Hypertension Induced by Monocrotaline through Enhancement of NO/cGMP Signaling Pathway in Rats [J]. Evid Based Complement Alternat Med,2016,2016:7915415.
[25] Yu WC,Chen HY,Yang HL,et al. rBMSC/Cav-1(F92A) Mediates Oxidative Stress in PAH Rat by Regulating SelW/14-3-3eta and CA1/Kininogen Signal Transduction [J]. Stem Cells Int,2019,2019:6768571.
[26] Guo ML,Kook YH,Shannon CE,et al. Notch3/VEGF-A axis is involved in TAT-mediated proliferation of pulmonary artery smooth muscle cells: Implications for HIV-associated PAH [J]. Cell Death Discov,2019,5:22-34.
[27] Chen X,Zhou W,Hu Q,et al. Exploration of the Notch3-HES5 signal pathway in monocrotaline-induced pulmonary hypertension using rat model [J]. Congenit Heart Dis,2019,14(3):396-402.
[28] Rashid J,Alobaida A,Al-Hilal TA,et al. Repurposing rosiglitazone, a PPAR-gamma agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH [J]. J Control Release,2018,280:113-123.
[29] Liu WH,Xu XH,Luo Q,et al. Inhibition of the RhoA/Rho-associated,coiled-coil-containing protein kinase-1 pathway is involved in the therapeutic effects of simvastatin on pulmonary arterial hypertension [J]. Clin Exp Hypertens,2018,40(3):224-230.
[30] Nikitopoulou I,Manitsopoulos N,Kotanidou A,et al. Orotracheal treprostinil administration attenuates bleomycin-induced lung injury, vascular remodeling,and fibrosis in mice [J]. Pulm Circ,2019,9(4):2045894019881954.
[31] Lee H,Kim KC,Cho MS,et al. Modafinil improves monocrotaline-induced pulmonary hypertension rat model [J]. Pediatr Res,2016,80(1):119-127.
[32] Wu F,Yao W,Yang J,et al. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats [J]. Biomed Pharmacother,2017,95:1161-1168.
[33] Liu J,Hu S,Zhu B,et al. Grape seed procyanidin suppresses inflammation in cigarette smoke-exposed pulmonary arterial hypertension rats by the PPAR-gamma/COX-2 pathway [J]. Nutr Metab Cardiovasc Dis,2020, 30(2):347-354.
[34] Wisutthathum S,Demougeot C,Totoson P,et al. Eulophia macrobulbon extract relaxes rat isolated pulmonary artery and protects against monocrotaline-induced pulmonary arterial hypertension [J]. Phytomedicine,2018,50:157-165.
[35] Budas GR,Boehm M,Kojonazarov B,et al. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension [J]. Am J Respir Crit Care Med,2018,197(3):373-385.
[36] Zheng Z,Yu S,Zhang W,et al. Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by activating PI3K/Akt/eNOS signaling [J]. Histol Histopathol,2016,32(1):11768.
[37] Su H,Xu X,Yan C,et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension [J]. Respir Res,2018,19(1):254.
[38] Cao Y,Yang Y,Wang L,et al. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats [J]. Biomed Pharmacother,2018, 106:1108-1115.
[39] Zhu G,Zhang W,Liu Y,et al. miR371b5p inhibits endothelial cell apoptosis in monocrotaline induced pulmonary arterial hypertension via PTEN/PI3K/Akt signaling pathways [J]. Mol Med Rep,2018,18(6):5489-5501.
[1]
王素1 李一平1 谢宁2. Wnt/LRP6信号通路对阿尔茨海默病突触功能影响的研究进展 [J]. 中国医药导报, 2020, 17(8): 33-35,47.
[2]
樊长征1 苗青1 洪巧瑜2 崔云1 何沂1 张琼1 张文江1. 祛风解痉方调节γδT细胞抑制哮喘小鼠气道高反应性的分子机制 [J]. 中国医药导报, 2020, 17(6): 4-8.
[3]
钟涛1 张国新1 周迪夷2 朱天娥1▲. 灵芝多糖对糖尿病肾病小鼠肾小管上皮细胞间充质转化的抑制作用 [J]. 中国医药导报, 2020, 17(6): 9-12.
[4]
梁政 钟剑锋 吴源聪 温文 陈灿 李波. 脂肪间充质干细胞来源外泌体对缺氧/复氧诱导的心肌细胞凋亡的影响 [J]. 中国医药导报, 2020, 17(5): 4-7,22.
[5]
张娟1 杨和银2 胡育英2 王怀振1. 血清GDF-15水平与慢性阻塞性肺疾病患者肺动脉压力的相关性 [J]. 中国医药导报, 2020, 17(5): 113-116.
[6]
王艳1 夏琳2 蔡华忠3 熊御云2. 4,4′-二异硫氰基芪-2,2′-二磺酸对脓毒症小鼠心肌炎性反应的作用及机制 [J]. 中国医药导报, 2020, 17(3): 4-7,21.
[7]
沈雷 李永涛 孙石柱 姚立杰 王璐璐 刘丹阳 金海峰 张善强. CXCL-13通过激活PI3K-Akt信号通路对人骨髓间充质干细胞迁移的影响 [J]. 中国医药导报, 2020, 17(27): 4-7.
[8]
谢丽媛1 刘莲2 荆晶3 安娜4. 射干麻黄汤对慢性阻塞性肺疾病大鼠肺组织的保护作用及对EGFR/PI3K信号通路的调节 [J]. 中国医药导报, 2020, 17(21): 12-16,29.
[9]
解利红1 王宝军2▲. TAM受体及其信号通路在免疫调节中作用的研究进展 [J]. 中国医药导报, 2020, 17(21): 34-37.
[10]
焦志华 步莉娜 陈军 邹锋 欧阳元明. 衣康酸对脓毒症小鼠急性肾损伤的保护作用 [J]. 中国医药导报, 2020, 17(13): 22-27.
[11]
武明云1,2 虞坚尔1 白莉3 薛征1,3 蒋沈华1,2 徐万超1,2. 基于NF-κB信号通路中药治疗支气管哮喘的实验研究进展 [J]. 中国医药导报, 2020, 17(10): 31-34.
[12]
姜彤伟1 郝珍珠2 王冰梅3 郭慧文2 朴星虎2 程祺2. 心肌缺血再灌注损伤中西医机制及相关药物治疗的研究进展 [J]. 中国医药导报, 2019, 16(9): 43-46,51.
[13]
武彦秋1 胥冬梅1 周启立1 王志杰1 刘会玲2 董志勇3 刘霞1. 高频振荡通气与西地那非联合治疗新生儿持续性肺动脉高压的临床效果 [J]. 中国医药导报, 2019, 16(8): 88-91.
[14]
刘丽珠1 刘薇2 樊琳2 郭俐宏1. 黄芪多糖对大鼠脑卒中后抑郁的影响 [J]. 中国医药导报, 2019, 16(7): 11-14.
[15]
贾汉旗 韩向东. Wnt信号通路在心血管疾病中的调控作用研究进展 [J]. 中国医药导报, 2019, 16(4): 51-54.