Molecular mechanism of Qufeng Jiejing Prescription in regulating γδT cells to inhibit airway hyperresponsiveness in asthmatic mice
FAN Changzheng1 MAO Qing1 HONG Qiaoyu2 CUI Yun1 HE Yi1 ZHANG Qiong1 ZHANG Wenjiang1
1.Department of Pneumology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China;
2.Department of Traditional Chinese Medicine Rehabilitation, Beijing Health Vocational College, Beijing 101101, China
Abstract:Objective To investigate the molecular mechanism of Qufeng Jiejing Prescription in regulating γδT cells to inhibit airway hyperresponsiveness in asthmatic mice. Methods The Balb/c mouse model of asthma was established with the method of ovalbumin nasal drip, and the intervention was conducted with the drugs of Qufeng Jiejing Prescription. The intervention effect of Qufeng Jiejing Prescription on the molecular phosphorylation level of signaling pathway during activation of γδT cells was compared. Thirty experimental mice method was divided into 6 groups according to random number table, each group of 5 mice, respectively for the blank control group, asthma model group, Prednisone Acetate group (0.27 mg/d), Qufeng Jiejing Prescription low dose group (0.59 g/d), Qufeng Jiejing Prescription medium dose group (1.18 g/d), Qufeng Jiejing Prescription high dose group (2.36 g/d). Each group was treated 1 time/d and intervention for 7 days. After administration, the mice were anesthetized and sacrificed, and the γδT cells in the lung airway tissues were isolated, purified and amplified. The proliferation activity of the γδT cells was detected by CCK-8, and the phosphorylation levels of molecules in different signaling pathways were detected by Western blot. Results Compared with the blank control group, the activity of γδT cells in the asthma model group was significantly increased, with statistically significant difference (P < 0.05). Compared with the asthma model group, there was no significant difference in the activity of γδT cells in the Qufeng Jiejing Prescription low dose group (P > 0.05), while the activity of γδT cells in the medium, high dose groups of Qufeng Jiejing Prescription and the Prednisone Acetate group were significantly decreased (P < 0.05). Compared with the blank control group, the protein expression levels of p-ERK1/2, p-P38 and β-catenin in the asthma model group increased, with statistically significant difference (P < 0.05), while the protein expression levels of ERK1/2 and P38 showed no statistically significant difference (P > 0.05). Compared with the asthma model group, the protein expression levels of p-ERK1/2, p-P38 and β-catenin in the low, medium and high dose groups of Qufeng Jiejing Prescription and the Prednisone Acetate group were decreased, with statistically significant differences (P < 0.05). However, ERK1/2 protein expression level increased in the middle and high dose groups of Qufeng Jiejing Prescription and Prednisone Acetate group, and P38 protein expression level increased in the Qufeng Jiejing Prescription low dose group and Prednisone Acetate group, the differences were statistically significant (all P < 0.05). Conclusion The possible molecular signaling pathway mechanism of the regulation of T cells to inhibit airway hyperresponsiveness in asthmatic mice is to inhibit the protein expression levels of p-ERK1/2, p-P38 and β-catenin, so as to reduce airway hyperresponsiveness in asthmatic mice and achieve the treatment of asthma.