从脂噬角度探讨补肾中药复方防治动脉粥样硬化的新策略
闫黎 贾庆玲 申定珠
上海中医药大学 上海市中医老年医学研究所,上海 200031
Discussion on the new strategy of Compound Chinese Medicine for Reinforcing Kidney for preventing and treating atherosclerosis from the perspective of lipophagy
YAN Li JIA Qingling SHEN Dingzhu
Shanghai Geriatrics Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
摘要 动脉粥样硬化(AS)是与增龄密切相关的多因性疾病,脂质蓄积为其中关键的病理因素。脂噬作为自噬重要的亚进程,可通过溶酶体介导选择性降解细胞内脂滴,减少脂质沉积,从而成为AS研究的新靶点。秉承AS本虚标实的基本病机及病证结合的基本思路,基于自噬与脂质代谢在AS进程中的交互作用,结合补肾中药复方可有效延缓衰老、调节脂质代谢以干预治疗AS的前期研究结果,本文拟从脂噬角度进一步探讨补肾中药复方防治AS的研究策略。
关键词 :
动脉粥样硬化 ,
自噬 ,
脂质代谢 ,
脂噬 ,
补肾中药复方
Abstract :Atherosclerosis (AS) is a multifactorial disease closely related to aging, and lipid accumulation is a key pathological factor. Lipophagy as an important sub-process of autophagy, it can selectively degradate intracellular lipid droplets via lysosome-mediated and reduce lipid deposition, which can be used as a new target for AS research. Adhering to the basic pathogenesis of deficient root and excessive branch, and the basic idea of the combination of disease and syndrome of AS, based on the interaction between autophagy and lipid metabolism in AS process, combined with the preliminary research results that the intervene therapy of AS, the Compound Chinese Medicine for Reinforcing Kidney can effectively delay aging and regulate lipid metabolism, this artical intends to further explore the research strategy of the Compound Chinese Medicine for Reinforcing Kidney prevents and treats AS from the perspective of lipophagy.
Key words :
Atherosclerosis
Autophagy
Lipid metabolisim
Lipophagy
Compound Chinese Medicine for Reinforcing Kidney
基金资助: 国家自然科学基金面上项目(81873348);
上海中医药大学“研究生创新培养专项”项目(Y201934)。
通讯作者:
申定珠(1975-),女,博士,主任医师,硕士研究生导师,主要从事中医药防治老年病临床与基础研究。
作者简介 : 闫黎(1993-),女,上海中医药大学龙华临床医学院2018级中医内科专业在读硕士研究生;研究方向:中医药防治老年病临床与基础研究。
[1] Ouimet M,Franklin V,Mak E,et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase [J]. Cell Metab,2011,13(6):655-667.
[2] 申定珠,陈川,迟惠英,等.从血管老化角度探讨动脉粥样硬化中医防治策略[J].中国中西医结合杂志,2012,32(2):266-268.
[3] 申定珠,赵红彬,邢三丽,等.首参颗粒对颈动脉粥样硬化患者临床疗效的初步评价[J].中国中医急症,2012,21(10):1559-1561.
[4] 申定珠,陈川,陈久林,等.首参颗粒对颈动脉粥样硬化患者血脂及炎症因子的影响[J].中华中医药学刊,2014, 32(1):22-24.
[5] Shen DZ,Xing SL,Chen C,et al. Effect of Shoushen granule on arterial elasticity in patients with carotid atherosclerosis:a clinical randomized controlled trial [J]. J Tradit Chin Med,2015,35(4):389-395.
[6] Singh R,Cuervo AAM. Autophagy in the cellular energetic balance [J]. Cell Metab,2011,13(5):495-504.
[7] Wen X,Klionsky DJ. An overview of macroautophagy in yeast [J]. J Mol Biol,2016,428(9):1681-1699.
[8] Galluzzi L,Baehrecke EH,Ballabio A,et al. Molecular definitions of autophagy and related processes [J]. Embo J,2017,36(13):1811-1836.
[9] Singh R,Kaushik S,Wang Y,et al. Autophagy regulates lipid metabolism [J]. Nature,2009,458(7242):1131-1135.
[10] Cohen S. Lipid droplets as organelles [J]. Int Rev Cell Mol Biol,2018,337:83-110.
[11] Schulze RJ,Sathyanarayan A,Mashek DG. Breaking fat:the regulation and mechanisms of lipophagy [J]. Biochim Biophys Acta Mol Cell Biol Lipids,2017,1862(10 Pt B):1178-1187.
[12] Walther TC,Farese RV. Lipid droplets and cellular lipid metabolism [J]. Annu Rev of Biochem,2012,81(1):687-714.
[13] Velikkakath AKG,Nishimura T,Oita E,et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets [J]. Mol Biol Cell,2012,23(5):896-909.
[14] Pfisterer SG,Bakula D,Frickey T,et al. Lipid droplet and early autophagosomal membrane targeting of Atg2A and Atg14L in human tumor cells [J]. J Lipid Res,2014, 55(7):1267-1278.
[15] Kurdi A,Martinet W,De Meyer GRY. mTOR inhibition and cardiovascular diseases:dyslipidemia and atherosclerosis [J]. Transplantation,2018,102(2S):S44-S46.
[16] Schroeder B,Schulze RJ,Weller SG,et al. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy [J]. Hepatology,2015,61(6):1896-1907.
[17] Sathyanarayan A,Mashek MT,Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism [J]. Cell Rep,2017,19(1):1-16.
[18] Yu P,Xiong T,Tenedero CB,et al. Rosuvastatin reduces aortic sinus and coronary artery atherosclerosis in SR-B1 (scavenger receptor class B type 1)/ApoE (apolipoprotein E) double knockout mice independently of plasma cholesterol lowering [J]. Arterioscler Thromb Vasc Biol,2018,38(1):26-39.
[19] Yin S,Yin S,Yang S,et al. MicroRNA 155 promotes ox LDL induced autophagy in human umbilical vein endothelial cells by targeting the PI3K/Akt/mTOR pathway [J]. Mol Med Rep,2018,18(3):2798-2806.
[20] Mollace V,Gliozzi M,Musolino V,et al. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells:role of oxidative stress and LOX-1 receptor expression [J]. Int J Cardiol,2015, 184(1):152-158.
[21] Li BH,Yin YW,Liu Y,et al. TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells [J]. Cell Death Dis,2014,5(4):e1182.
[22] Zhu S,Wang Y,Chen W,et al. High-density lipoprotein (HDL) counter- regulates serum amyloid A (SAA)-induced sPLA2-IIE and sPLA2-V expression in macroph-ages [J]. PLoS One,2016,11(11):e0167468.
[23] Li S,Zhao H,Wang Y,et al. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus [J]. Ecotoxicol Environ Saf,2018,148:125-134.
[24] Laguna-Fernandez A,Checa A,Carracedo M,et al. ERV1/ChemR23 signaling protects from atherosclerosis by modifying oxLDL uptake and phagocytosis in macropha-ges [J]. Circulation,2018,138(16):1693-1705.
[25] He J,Zhang G,Pang Q,et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition [J]. FEBS J,2017, 284(9):1324-1337.
[26] Pon L A. Lipid droplet autophagy during energy mobilization,lipid homeostasis and protein quality control [J]. Front Biosci,2018,23(8):1552-1563.
[27] Chen K,Yuan R,Zhang Y,et al. Tollip deficiency alters atherosclerosis and steatosis by disrupting lipophagy [J]. J Am Heart Assoc,2017,6(4):e 004 078.
[28] 王志丹,贾连群,杨关林.基于阴阳五行学说探讨自噬对于脂质代谢内稳态的调节[J].中华中医药学刊,2017, 35(5):1202-1205.
[29] 王志丹,贾连群,宋囡,等.从阴阳自和角度论肝脏脂质代谢与细胞自噬的关系[J].时珍国医国药,2017,28(4):924-925.
[30] 刘喜明,仝小林,王朋倩.试论“膏浊”致病论[J].世界中西医结合杂志,2009,4(12):839-842.
[31] 徐玲,马红艳,杨军,等.高脂饮食通过p-AMPK/mTOR信号通路下调小鼠肝细胞自噬水平[J].基础医学与临床,2018,38(1):37-41.
[32] 倪小鸥,宫丽鸿,张湜,等.搜风祛痰中药对ApoE基因敲除小鼠动脉粥样硬化不稳定斑块自噬相关蛋白beclin1和LC3的影响[J].中西医结合心脑血管病杂志,2016,14(5):488-491.
[33] 游宇,李林,侯贝贝,等.补阳还五汤抗ApoE-/-小鼠动脉粥样硬化作用与调控巨噬细胞自噬的机制研究[J].中药药理与临床,2018,34(4):4-8.
[34] 谢盈彧,许晓敏,张军平,等.基于PI3K/Akt/mTOR通路探讨补肾抗衰片介导自噬调控动脉粥样硬化的机制[J].中国中西医结合杂志,2018,38(5):586-593.
[35] 申定珠,邢三丽,陈川,等.基于ApoE-/-小鼠TLR4、MCP-1、ICAM-1表达探讨首参颗粒干预动脉粥样硬化的效应机制[J].中国中医急症,2017,26(2):192-194.
[36] 申定珠,陈川,邢三丽,等.基于AngⅡ、ApoE表达探讨补肾中药复方首参颗粒对颈动脉粥样硬化患者的影响[J].中国医药导报,2017,14(10):96-100.
[37] 曹慧,申定珠,陈川,等.基于细胞自噬探讨补肾中药复方防治动脉粥样硬化的研究思路[J].中国医药导报,2017,14(19):77-80.
[38] 靖林林,龚先玲,孙学刚.自噬的中医属性及其在人体衰老和肿瘤发病中的意义[J].中医杂志,2014,55(22):1891-1893.
[1]
师小径 郑明奋 万仁强 张沈华. 紫杉醇对人鼻咽癌细胞体外自噬的影响 [J]. 中国医药导报, 2019, 16(9): 22-25.
[2]
王露1 白桦1 韩梅1 赵玉岩2. 2型糖尿病患者血清脂肪细胞型脂肪酸结合蛋白、白细胞介素-17水平及其与下肢动脉粥样硬化病变的关系 [J]. 中国医药导报, 2019, 16(8): 116-119,135.
[3]
贾庆玲 申定珠. 基于PCSK9调控CD36、介导RCT探讨补肾中药复方防治动脉粥样硬化的研究策略 [J]. 中国医药导报, 2019, 16(7): 116-119.
[4]
罗建华 王超 岳玉国. 动脉粥样硬化、急性冠脉综合征患者血清HDL2b水平变化及临床意义 [J]. 中国医药导报, 2019, 16(5): 55-58.
[5]
杨平1 廖萍2 伍文娟1. 血清同型半胱氨酸、C反应蛋白与2型糖尿病伴脑梗死患者颈动脉粥样硬化的关系 [J]. 中国医药导报, 2019, 16(5): 126-129,141.
[6]
梁浩1,2 于莹1 周忠光1. 针药联合治疗高血压合并动脉粥样硬化的临床观察 [J]. 中国医药导报, 2019, 16(30): 147-150,167.
[7]
黄家欣1 田稷1 倪维2 都文文3 黄荣增1 宋成武1 谢云1 金姝娜4. 白三烯类成分在动脉粥样硬化中的研究进展 [J]. 中国医药导报, 2019, 16(29): 31-36.
[8]
钟素1 余研1 苏晓娟2 吴永鑫3. 冠心病患者血清visfatin水平与氧化应激及颈动脉粥样硬化的关系 [J]. 中国医药导报, 2019, 16(29): 68-71.
[9]
秦倩1 青玉凤2 周闻君2 王聃2 熊琴3 杨小红1,4. 自噬在类风湿关节炎发病机制中的作用进展 [J]. 中国医药导报, 2019, 16(28): 59-62.
[10]
万俊锋 阳波 郑佳状 冉茂波 宋昭君. 姜黄素对人椎间盘髓核细胞自噬和退变的影响 [J]. 中国医药导报, 2019, 16(25): 11-15.
[11]
彭拥军1 乔玉2 李忠仁2 傅淑平2 储继红1 姜鹏君1 朱冰梅3. 细胞自噬与脑缺血 [J]. 中国医药导报, 2019, 16(22): 46-49.
[12]
成梦群 尹健彬 张旋. 巨噬细胞自噬在炎症性疾病中的作用研究进展 [J]. 中国医药导报, 2019, 16(21): 35-38.
[13]
彭拥军1 徐疏影2 李忠仁2 傅淑平2 储继红1 姜鹏君1 朱冰梅3. 电针抗脑缺血再灌注损伤的机制研究进展 [J]. 中国医药导报, 2019, 16(19): 51-53,65.
[14]
邹兰1 李国良1 严小新2. 血浆中suPAR和D-二聚体水平与动脉粥样硬化性脑梗死患者斑块易损性相关研究 [J]. 中国医药导报, 2019, 16(14): 47-50.
[15]
邓国雄 韦金儒 陈梅香. 艾塞那肽对ApoE-/-小鼠动脉粥样硬化血清抵抗素的影响 [J]. 中国医药导报, 2019, 16(13): 4-7,11.