Research progress on the regulatory mechanism of pro-mitochondrial fusion mitotic proteins in mitochondrial fusion, division and apoptosis
ZHOU Manli1 WANG Jianzhang1,2 FENG Yu1 YU Yunfeng1 LIU Haochen1 JIAN Weixiong1,3
1.College of Traditional Chinese Medicine, Hu′nan University of Chinese Medicine, Hu′nan Province, Changsha 410208, China;
2.Department of Cardiovascular, the First Affiliated Hospital of Hu′nan University of Chinese Medicine, Hu′nan Province, Changsha 410007, China;
3.Diagnostics of Traditional Chinese Medicine, National Key Discipline, Hu′nan University of Chinese Medicine Hu′nan Provincial Key Laboratory, Hu′nan Province, Changsha 410208, China
Abstract:Mitochondria is widely found in higher animals and plants due to their specific structure and function. Mitochondria contains a large number of enzyme systems, which can be coupled to oxidative phosphorylation via an electron transport chain to form adenosine triphosphate, which is the main production structure. The realization of mitochondrial function is inseparable from the changes in its structure. Mitochondrial fusion and division are the basis for achieving function. Mitochondrial fusion can promote the connection between adjacent mitochondria, and mitochondrial division can promote the normal distribution of mitochondria in cells, which is of great significance for maintaining normal physiological activities of the body. So far, mitochondrial fusion proteins that have been extensively studied in mammals include mitofusin 1 and mitochondrial fusion protein 2. Mitochondrial proteins include dynamin-related protein 1. The mitochondrial network structure is destroyed when the mitochondrial fusion and division movements are unbalanced, the pro-apoptotic factors such as cytochrome C are released, which leads to apoptosis. In this paper, a brief review of the regulation of mitochondrial fusion, mitochondrial fission and apoptosis was made in combination with the research results.
[1] Lee H,Yoon Y. Mitochondrial fission and fusion [J]. Biochem Soc Trans,2016,44(6):1725-1735.
[2] 李香云,余剑波.线粒体的融合、分裂与炎症反应研究进展[J].中国病理生理杂志,2016,32(12):2295-2299.
[3] 郑义鹏,魏学敏,周庆彪,等.线粒体分裂融合与细胞氧化还原交互调控作用的研究进展[J].癌变畸变突变,2018, 30(3):239-241,247.
[4] 杨华丽.七氟醚后处理对大鼠心肌缺血再灌注损伤时线粒体融合蛋白-1表达的影响[J].太原:山西医科大学,2014.
[5] Autret A,Martin SJ. Bcl-2 family proteins and mitochondrial fission/fusion dynamics [J]. Cell Mol Life Sci,2010, 67(10):1599-1606.
[6] 李香云,余建波.线粒体的融合、分裂与炎症反应研究进展[J].中国病理生理杂志,2016,32(12):2295-2299.
[7] Yue W,Chen Z,Liu H,et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30 [J]. Cell Res,2014,24(4):482-496.
[8] 张洋洋,裴海峰,段海霞,等.线粒体融合蛋白2在心血管疾病中的研究现状[J].心脏杂志,2015,27(2):224-228.
[9] Patrushev MV,Mazunin IO,Vinogradova EN,et al. Mitochondrial Fission and Fusion [J]. Biochemistry (Mosc),2015,80(11):1457-1464.
[10] 俞瑾,郑宏.调控线粒体动力学分子机制在心肌保护中的研究进展[J].中国科技论文,2016,11(6):645-650.
[11] Otera H,Mihara K. Mitochondrial dynamics:functional link with apoptosis [J]. Int J Cell Biol,2012,2012:821676.
[12] 陈改革.动力相关蛋白1在脓毒症心肌损伤中的作用及其机制研究[J].杭州:浙江大学,2017.
[13] Chen J,Xu K,Zhang X,et al. Mutation screening of mitochondrial DNA as well as OPA1 and OPA3 in a Chinese cohort with suspected hereditary optic atrophy [J]. Invest Ophthalmol Vis Sci,2014,55(10):6987-6995.
[14] Spiegel R,Saada A,Flannery PJ,et al. Fatal infantile mitochondrial encephalomyopathy,hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation [J]. J Med Genet,2016,53(2):127-131.
[15] Plecita-Hlavata L,Engstova H,Alan L,et al. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering [J]. FASEB J,2016,30(5):1941-1957.
[16] 陈慧娟,刘金东.线粒体动力相关蛋白Drp1与心肌缺血再灌注损伤机制的研究进展[J].生理科学进展,2016, 47(5):369-374.
[17] Sharp WW. Dynamin-related protein 1 as a therapeutic target in cardiac arrest [J]. J Mol Med (Berl),2015,93(3):243-252.
[18] Chang CR,Blackstone C. Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1 [J]. Ann N Y Acad Sci,2010,1201:34-39.
[19] Bossy-Wetzel E,Barsoum MJ,Godzik A,et al. Mitochondrial fission in apoptosis,neurodegeneration and aging [J]. Curr Opin Cell Biol,2003,15(6):706-716.
[20] 赵丽,周巧霞,王拴,等.线粒体分裂和融合相关蛋白质的研究进展[J].生理学报,2018,70(4):424-432.
[21] Cribbs JT,Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death [J]. EMBO Rep,2007,8(10):939-944.
[22] Dickey AS,Strack S. PKA/AKAP1 and PP2A/Bbeta2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics [J]. J Neurosci,2011,31(44):15 716-15 726.
[23] Sheridan C,Martin SJ. Mitochondrial fission/fusion dynamics and apoptosis [J]. Mitochondrion,2010,10(6):640-648.
[24] Lee H,Yoon Y. Mitochondrial Dynamics:Mechanisms and Pathologies [M]. New York:University of Rochester School of Medcine and Dentistry,2012.
[25] Karbowski M,Lee YJ,Gaume B,et al. Spatial and temporal association of Bax with mitochondrial fission sites,Drp1,and Mfn2 during apoptosis [J]. J Cell Biol,2002, 159(6):931-938.
[26] Arnoult D,Rismanchi N,Grodet A,et al. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death [J]. Curr Biol,2005,15(23):2112-2118.
[27] Breitzig MT,Alleyn MD,Lockey RF,et al. A mitochondrial delicacy:dynamin-related protein 1 and mitochondrial dynamics [J]. Am J Physiol Cell Physiol,2018,315(1):C80-C90.
[28] 张喆,孙易,季浏.促线粒体融合蛋白在线粒体融合和细胞凋亡中的作用[J].生命科学,2015,27(2):168-173.
[29] Karbowski M,Norris KL,Cleland MM,et al. Role of Bax and Bak in mitochondrial morphogenesis [J]. Nature,2006,443(7112):658-662.
[30] Weaver D,Eisner V,Liu X,et al. Distribution and apoptotic function of outer membrane proteins depend on mitochondrial fusion [J]. Mol Cell,2014,54(5):870-878.
[31] 支伟伟,陈丽娜,李凯,等.MFN1介导的线粒体融合在心肌细胞凋亡中的作用研究[J].现代生物医学进展,2018,18(9):1654-1657.
[32] 许美芬,梁玲芝,赵磊,等.线粒体融合、分裂与心肌缺血再灌注损伤的研究进展[J].心脑血管病防治,2017, 17(6):463-466.
[33] 蒋春笋,肖伟明,陈佺.线粒体分裂、融合与细胞凋亡[J].生物物理学报,2007:256-264.