Research progress of analysis of volatile organic compounds in biological fluids
TONG Hongshuang1 WANG Changsong2
1.Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150000, China;
2.Department of Critical Care Medicine, Cancer Hospital Affiliated to Harbin Medical University, Heilongjiang Province, Harbin 150040, China
Abstract:Analysis of volatile organic compounds in exhaled breath, blood, sweat, urine, saliva, pleural effusion, cerebrospinal fluid, stool is a new method that was used for the assessment of health status, disease screening and diagnosis. In recent years, this method has the advantages of non-invasive, rapid, convenient operation, cheap and patients with good tolerance. The analysis of volatile organic compounds has attracted more and more attention of researchers and expanded a new research field. At present, the metabolomics research of lung cancer in exhaled breath, blood and urine show that alkanes, aromatic hydrocarbons, oxy-compound has a certain diagnostic value. There is also a link between identified various types of cancer and some special volatile organic compounds.
[1] Pauling L,Robinson AB,Teranishi R,et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Natl Acad Sci USA,1971,68(10):2374-2376.
[2] Williams H,Pembroke A. Sniffer dogs in the melanoma clinic? [J]. Lancet,1989,333(8640):734.
[3] Kischkel S,Miekisch W,Fuchs P,et al. Breath analysis during one-lung ventilation in cancer patients [J]. Eur Respir J,2012,40(3):706-713.
[4] Ressom HW,Xiao JF,Tuli L,et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis [J]. Analytica Chimica Acta,2012,743:90-100.
[5] Li J,Peng Y,Duan Y. Diagnosis of breast cancer based on breath analysis:An emerging method [J]. Crit Rev Oncol Hematol,2013,87(1):28-40.
[6] Peng G,Hakim M,Broza YY,et al. Detection of lung,breast,colorectal,and prostate cancers from exhaled breath using a single array of nanosensors [J]. Br J Cancer,2010,103(4):542-551.
[7] Altomare DF,Di M,Porcelli F,et al. Exhaled volatile organic compounds identify patients with colorectal cancer [J]. Br J Surg,2013,100(1):144-150.
[8] Di Lena M,Porcelli F,Altomare DF. Volatile organic compounds as new biomarkers for colorectal cancer:a review [J]. Colorectal Dis,2016,18(7):654-663.
[9] Arasaradnam RP,McFarlane MJ,Ryan-Fisher C,et al. Detection of colorectal cancer(CRC)by urinary volatile organic compound analysis [J]. PLoS One,2014,9(9):e108750.
[10] Tonzetich J,Carpenter PA. Production of volatile sulphur compounds from cysteine,cystine and methionine by human dental plague [J]. Arch Oral Biol,1971,16(6):599-607.
[11] Imamura T. Influences of amino acids on the phenol and indole production of salivary microorganisms [J]. Shigaku,1982,70(1):21-35.
[12] Claus D,Geypens B,Ghoos Y,et al. Oral malodor,assessed by closed-loop,gas chromatography,and ion-trap technology [J]. High Resol Chromatogr,1997,20(2):94-98.
[13] Sánchez MN,García EH,Pavón JL,et al. Fast analytical methodology based on mass spectrometry for the determination of volatile biomarkers in saliva [J]. Anal Chem,2012,84(1):379-385.
[14] Amann A,Mochalski P,Ruzsanyi V,et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties [J]. J Breath Res,2014,8(1):016003.
[15] Soini,HA,Klouckova I,Wiesler D,et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry [J]. Chem Ecol,2010,36(9):1035-1042.
[16] Al-Kateb H,de Lacy Costello B,Ratcliffe N. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS [J]. J Breath Res,2013,7(3):036004.
[17] Kostelc JG,Preti G,Zelson PR,et al. Volatiles of exogenous origin from the human oral cavity [J]. J Chromatogr,1981,226(2):315-323.
[18] Scotter JM,Allardyce RA,Langford VS,et al. The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry(SIFT-MS)and comparison with the BacT/ALERT automated blood culture system [J]. J Microbiol Methods,2006,65(3):628-631.
[19] Allardyce RA,Hill AL,Murdoch DR. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry [J]. Diagn Microbiol Infect Dis,2006,55(4):255-261.
[20] Deng C,Zhang X,Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004, 808(2):269-277.
[21] Deng C,Li N,Zhang X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1):47-52.
[22] Li N,Deng C,Yin X,et al. Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization [J]. Analyt Biochem,2005,342(2):318-326.
[23] Houeto P,Hoffman JR,Got P,et al. Acetonitrile as a possible marker of current cigarette smoking [J]. Hum Exp Toxicol,1997,16(11):658-661.
[24] Mochalski P,Krapf K,Ager C,et al. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings [J]. Toxicol Mech Methods,2012,22(7):502-511.
[25] Mochalski P,Al-Zoairy R,Niederwanger A,et al. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro [J]. J Breath Res,2014,8(4):046003.
[26] Johnson CH,Manna SK,Krausz KW,et al. Global meta-bolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model [J]. Metabolites,2013,3(3):658-672.
[27] Cheng Y,Xie G,Chen T,et al. Distinct urinary metabolic profile of human colorectal cancer [J]. Proteome Res,2012,11(2):1354-1363.
[28] Davis VW,Schiller DE,Eurich D,et al. Urinary metabolomic signature of esophageal cancer and Barrett's esophagus [J]. World J Surg Oncol,2012,10(1):271.
[29] Davis VW,Schiller DE,Eurich D,et al. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature [J]. Ann Surg Oncol,2013,20(3):S415-S423.
[30] Zhang A,Sun H,Yan G,et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry [J]. Clin Chim Acta,2013,418:86-90.
[31] Matsumura K,Opiekun M,Oka H,et al. Urinary volatile compounds as biomarkers for lung cancer:a proof of principle study using odor signatures in mouse models of lung cancer [J]. PLoS One,2010,5(1):e8819.
[32] Zhang L,Li L,Kong H,et al. Urinary metabolomics study of renal cell carcinoma based on gas chromatography-mass spectrometry [J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(5):763-766.
[33] Liu H,Wang H,Li C,et al. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2014,945/946:53-59.
[34] Hanai Y,Shimono K,Matsumura K,et al. Urinary volatile compounds as biomarkers for lung cancer [J]. Biosci Biotechnol Biochem,2012,76(4):679-684.
[35] de Lacy Costello B,Amann A,Al-Kateb H,et al. A review of the volatiles from the healthy human body [J]. J Breath Res,2014,8(1):014001.
[36] Filipiak W,Ruzsanyi V,Mochalski P,et al. Dependence of exhaled breath composition on exogenous factors,smoking habits and exposure to air pollutants [J]. J Breath Res,2012,6(3):036008.