CRISPR/cas9基因编辑系统的结构功能及其在脑胶质瘤中的应用进展
汪超甲 王辉
湖北医药学院附属太和医院神外三科,湖北十堰 442000
Structure and function of the CRISPR/cas9 gene editing system and its application progress in glioma
WANG Chaojia WANG Hui
The Third Department of Neurosurgery, Taihe Hospital Affiliated to Hubei Medical College, Hubei Province, Shiyan 442000, China
摘要 脑胶质瘤是颅内最常见的原发性恶性肿瘤,目前的手术、化疗、放疗效果欠佳,基因治疗可能成为未来脑胶质瘤的重要发展方向。现有的基因编辑技术有RNA干扰、TALEN、ZENs等,由于其设计操作复杂且脱靶率高,一直没能得到很好的应用。(CRISPR)/CRISPR-associated(Cas)9是很多细菌和大部分古生菌的天然免疫系统。通过对入侵的病毒和核酸进行特异性的识别,利用Cas蛋白进行切割,从而达到对自身的免疫,较上述的几种方法,具有明显的优势。本文就CRISPR/Cas9的结构功能及在脑胶质瘤治疗中的应用作一综述,以期为脑胶质的治疗提供新途径。
关键词 :
CRISPR/Cas9 ,
结构功能 ,
脑胶质瘤 ,
应用进展
Abstract :Glioma is the most common primary malignant tumor of the brain. Currently, surgery, chemotherapy and radiotherapy are not effective. Gene therapy may become an important development direction of glioma in the future. The existing gene editing techniques have RNA interference, TALEN, ZENs and so on. Because of their complex design operation and high miss distance, they have not been used well. (CRISPR) /CRISPR-associated (Cas) 9 is a natural immune system for many bacteria and most of the palaeophytes. By specific identification of the invaded virus and nucleic acid, the Cas protein is used to cut the virus to achieve its own immunity. Compared with the above methods, it has obvious advantages. This article reviews the structure and function of CRISPR/Cas9 and its application in the treatment of glioma, in order to provide a new therapeutic approach for the treatment of brain glia.
Key words :
CRISPR/Cas9
Structural function
Glioma
Application progress
基金资助: 湖北省十堰市科技局指导性项目(17Y14);
湖北医药学院中青年创新团队项目(2014CXZ03);
湖北医药学院附属太和医院博士启动基金项目(2014QD02)。
通讯作者:
王辉(1971-),男,博士,主任医师;研究方向:颅内肿瘤的临床及基础研究。
作者简介 : 汪超甲(1981-),男,硕士;研究方向:脑胶质瘤的临床及基础研究。
[1] Ricard D,Idbaih A,Ducray F,et al. Primary brain tumours in adults [J]. Lancet,2012,379(9830):1984-1996.
[2] Ishino Y,Shinagawa H,Makino K,et al. Nucleotide—sequence of the tap gene responsible for alkaline—phosphatase isozyme conversion in Escherichia coli and identification of the gene product [J]. J Bacteriol,1987,169(12):5429-5433.
[3] Jansen R,van Embden JD,Gaastra W,et al. Identification of genes that are associated with DNA repeats in prokaryotes [J]. Mol Microbiol,2002,43(6):1565-1575.
[4] Qi LS,Larson MH,GilbertI LA,et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell,2013,152(2):1173-1183.
[5] Makarova KS,Haft DH,Barrangou AR,et al. Evolution and classification of the CRISPR-Cas systems [J]. Nat Rev Microbiol,2011,9(6): 467-477.
[6] Deltchevae E,Chylinski K,Sharma C M,et al. CRISPR RNA maturation by trans-encoded small RNA and host factorRNase Ⅲ [J]. Nature,2011,471(3):602-607.
[7] Hwang WY,Fu Y,Reyon D,et al. Efficient genome editing in zebrafish using a CRISPR-Cas system [J]. Nat Biotechnol,2013,10(1):886-890.
[8] Marraffinla LA,Sontheimer EJ. CRISPR interference:RNA-directed adaptive immunity in bacteria and archae [J]. Nat Rev Genet,2010,11(3):181-190.
[9] Barranguou R,Fremaux C,Deveau H,et al. CRISPR provides acquired resistance against viruses in prokaryotes [J]. Science,2007,315(5819):1709-1712.
[10] Heckl D,Kowalczyk MS,Yudovich D,et al. Generation of mouse models of myeloid malignancy with combinatorial geneticlesions using CRISPR-Cas9 genome editing [J]. Nat Biotechnol,2014,32(9):941-946.
[11] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science,2012,337(10):816-821.
[12] Cong L,Ran FA,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science,2013, 339(6121):819-823.
[13] Wang HY,Yang H,Shivalila CS,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering [J]. Cell,2013,153(4):910-918.
[14] Ran FA,Hsu PD,Lin CY,et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity [J]. Cell,2013,154(9):1380-1389.
[15] Nakayama T,Fish MB,Fisher M,et al. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis [J]. Genesis,2013,51(12):835-843.
[16] Qi LS,Larson MH,Gilbert LA,et al. Repurposing CRISPR as an RNA-guided platform forsequence-specific control of gene expression [J]. Cell,2013,152(2):1173-1183.
[17] Gilbert LA,Larson MH,Morsut L,et al. CRISPR-mediated modular RNA-guidedregulation of transcription in eukaryotes [J]. Cell,2013,154(2):442-451.
[18] Mali P,Esvelt KM,Church GM,et al. Cas9 as a versatile tool for engineering biology [J]. Nat Methods,2013,10(10):957-963.
[19] Larson MH,Gilbert LA,Wang X,et al. CRISPR interference(CRISPRi)for sequence specific control of gene expression [J]. Nat Protoc,2013,8(11):2180-2196.
[20] Shalem O,Sanjana NE,Hartenian E,et al. Genome-scale CRISPR-Cas9 knockout screening in human cells [J]. Science,2013,343(6166):84-87.
[21] Fu Y,Foden JA,Khayter C,et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells [J]. Nat Biotechnol,2013,31(9):822-826.
[22] Huang K,Yang C,Wang QX,et al. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells [J]. Cancer Letters,2017(388):269-280.
[23] Glaser T,Han I,Wu LQ,et al. Targeted Nanotechnology in lioblastoma Multiforme [J]. Front Pharmacol,2017,8(5):166-176.
[24] Zuckermann M,HovestadtV,Christiane B,et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile braintumour modelling[J].Nat Commun,2015,6(20):7391-7399.
[25] Fatimy RE,Subramanian S,Uhlmann EJ,et al. Genome Editing Reveals Glioblastoma Addiction to MicroRNA-10b [J]. Molecular Therapy,2017,25(2):378-388.
[26] Chen FY,Rosiene J,Che A,et al. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling [J]. Development,2015,142(20):3601-3611.
[27] Uibhir EO,Carragher N,Pollard SM,et al. Accelerating glioblastoma drug discovery:convergence of patient-derivedmodels,genome editing and phenotypic screening [J]. Mol Cell Neurosci,2016,7431(6):30 215-30 259.
[28] Li JF,Norville JE,Aach J,et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 [J]. Nat Biotechnol,2013,31(8):688-691.
[29] DiCarlo JE,Norville JE,Mali P,et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Res,2013,41(7):4336-4343.