长链非编码RNA在重要组织器官缺血再灌注损伤中的研究进展
王怡 梁就庆 孙慧林 杨丹 张良清▲ 胡喆▲
广东医科大学附属医院麻醉科,广东湛江 524000
Research progress of long non-coding RNAs in ischemia reperfusion injury of important tissue and organs
WANG Yi LIANG Jiuqing SUN Huilin YANG Dan ZHANG Liangqing▲ HU Zhe▲
Anesthesiology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Province, Zhanjiang 524000, China
摘要 近年来,越来越多的研究表明,长链非编码RNA(lncRNA)能够通过多种作用机制参与各种细胞生命活动和许多疾病的发生与发展。然而,lncRNA在缺血再灌注损伤(IRI)这一病理过程中的调控作用仍未阐明。深入了解这些lncRNA在IRI中的作用有利于全面认识IRI后的分子调控网络,对于寻找IRI新的生物标志物和治疗靶点、保护重要组织器官、改善患者的临床预后有着重要意义。本文就目前已知的lncRNA在心、脑、肝、肾、肺等重要器官的IRI中的作用进行综述,并总结部分还未深入研究的lncRNA,为未来更深层次的机制研究提供方向。
关键词 :
长链非编码RNA ,
缺血再灌注损伤 ,
心肌梗死 ,
脑中风 ,
急性肾损伤 ,
肝缺血再灌注损伤 ,
肺缺血再灌注损伤
Abstract :In recent years, more and more studies have suggested that long non-coding RNAs (lncRNAs) can participate in the vital movement of all kinds of cells and the emergence and development of many diseases. However, the regulating effects of lncRNA in the pathological process of ischemia-reperfusion injury (IRI) have not been clarified. To further understand the role of these lncRNAs in IRI will help to know about the molecular regulatory network after IRI, which has great significance for seeking new biomarkers and therapeutic targets of IRI, protecting important tissue and organs, and improving the clinical prognosis of patients. This paper reviews the currently known effects of lncRNA in the IRI of important organs of heart, brain, liver, kidney and lung, and summarizes some lncRNAs those have not been researched deeply, so as to provide direction for future deeper mechanism research.
Key words :
Long non-coding RNAs
Ischemia reperfusion injury
Myocardial infarction
Stroke
Acute kidney injury
Hepatic ischemia reperfusion injury
Lung ischemia reperfusion injury
基金资助: 国家自然科学基金资助项目(81470405、31301104)。
通讯作者:
▲共同通讯作者
[1] Eltzschig HK,Eckle T. Ischemia and reperfusion-from mechanism to translation [J]. Nature Medicine,2011,17(11):1391-1401.
[2] Ong SB,Katwadi K,Kwek XY,et al. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury [J]. Expert Opin Ther Targets,2018,22(3):247-261.
[3] Slavoff SA,Mitchell AJ,Schwaid AG,et al. Peptidomic discovery of short open reading frame-encoded peptides in human cells [J]. Nat Chem Biol,2013,9(1):59-64.
[4] Yoon JH,Abdelmohsen K,Gorospe M. Functional interactions among micro RNAs and long noncoding RNAs [J]. Semin Cell Dev Biol,2014,34(4):9-14.
[5] Wang K,Sun T,Li N,et al. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361 [J]. PLos Genet,2014,10(7):e1004467.
[6] Liu Y,Zhou D,Li G,et al. Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression [J]. Cell Physiol Biochem,2015,35(5):1986-1998.
[7] Yu SY,Dong B,Tang L,et al. LncRNA MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in ischemia-reperfusion injured heart [J]. Int J Cardiol,2018, 254:50.
[8] Zhao ZH,Hao W,Meng QT,et al. Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury [J]. Cell Biol Int,2017,41(1):62-70.
[9] Li X,Dai Y,Yan S,et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction [J]. Biochem Biophys Res Commun,2017,491(4):1026-1033.
[10] Wang K,Liu CY,Zhou LY,et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p [J]. Nat Commun,2015,6:6779.
[11] Wang JX,Zhang XJ,Li Q,et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD [J]. Circ Res,2015,117(4):352-363.
[12] Wang K,Liu F,Liu CY,et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873 [J]. Cell Death Differ,2016,23(8):1394-1405.
[13] Wu X,Zhu H,Zhu S,et al. lncRNA expression character associated with ischemic reperfusion injury [J]. Mol Med Rep,2017,16(4):3745-3752.
[14] Li H,Gao A,Feng D,et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury [J]. Transl Stroke Res,2014,5(5):618-626.
[15] Li Z,Li J,Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression [J]. Neuroscience,2017, 354:1-10.
[16] Xin JW,Jiang YG. Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells [J]. Exp Ther Med,2017,13(4):1225-1234.
[17] Zhang X,Tang X,Liu K,et al. Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke [J]. J Neurosci,2017,37(7):1797-1806.
[18] Wu Z,Wu P,Zuo X,et al. LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation [J]. Mol Neurobiol,2017,54(10):7670-7685.
[19] Li H,Wu Y,Suo G,et al. Profiling neuron-autonomous lncRNA changes upon ischemia/reperfusion injury [J]. Biochem Biophys Res Commun,2018,495(1):104-109.
[20] Chen Z,Jia S,Li D,et al. Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers [J]. PLoS One,2013,8(11):e80817.
[21] Chen Z,Luo Y,Yang W,et al. Comparison analysis of dysregulated LncRNA profile in mouse plasma and liver after hepatic ischemia/reperfusion injury [J]. PLoS One,2015,10(7):e133462.
[22] Yang Y,Song M,Liu Y,et al. Renoprotective approaches and strategies in acute kidney injury [J]. Pharmacol Ther,2016,163:58-73.
[23] Yu TM,Palanisamy K,Sun KT,et al. RANTES mediates kidney ischemia reperfusion injury through a possible role of HIF-1alpha and LncRNA prins [J]. Sci Rep,2016,6:18424.
[24] Larkin TM,Dragovich A,Cohen SP. Acute renal failure during a trial of spinal cord stimulation:theories as to a possible connection [J]. Pain Physician,2008,11(5):681-686.
[25] Liu QQ,Liu H,He ZG,et al. Differential gene and lncRNA expression in the lower thoracic spinal cord following ischemia/reperfusion-induced acute kidney injury in rats [J]. Oncotarget,2017,8(32):53 465-53 481.
[1]
余奇劲1 田文华2 杨云朝1. 远程缺血预处理对兔脊髓缺血再灌注损伤的保护作用及其机制 [J]. 中国医药导报, 2018, 15(9): 8-12.
[2]
彭晓鹏1,2 杨文聪3,4 沈国刚5 单飞1 林明1 柯略森1 黄劲松2▲ 周成斌2. 左西孟旦在重症瓣膜性心脏病外科手术心肌缺血预处理中的应用 [J]. 中国医药导报, 2018, 15(8): 48-51,59.
[3]
张楠. 替罗非班在急性ST段抬高型心肌梗死行PCI术患者中应用的最佳时机 [J]. 中国医药导报, 2018, 15(8): 124-128.
[4]
郑婷 杨定平▲. 脓毒症急性肾损伤的研究机制及进展 [J]. 中国医药导报, 2018, 15(6): 24-27.
[5]
李英 赵丽红. 芪苈强心胶囊对ST段抬高型急性心肌梗死PCI术后患者心功能及预后的影响 [J]. 中国医药导报, 2018, 15(6): 137-140.
[6]
饶捍卫 钟泽▲ 周燕. 急性心肌梗死患者治疗延误影响因素及对策探讨 [J]. 中国医药导报, 2018, 15(5): 117-121,126.
[7]
刘文辉1 肖坚2 孙维华3 杨娜3 刘伯轩3 龚建平3. miR-1203和HOTAIR rs7958904位点对乳腺癌细胞生长的影响 [J]. 中国医药导报, 2018, 15(3): 8-12.
[8]
徐楷1 赵存瑞2 郭宏1 孙牧1 向宗兴1 陈入菲1 贾军正1▲. 参芎注射液联合卡托普利对心肌梗死患者心室重构及血清脑钠肽的影响 [J]. 中国医药导报, 2018, 15(3): 130-133.
[9]
王泽1 张永涛2 李珊1 朱德辉1 纪晓军3. 葛根素在脑缺血再灌注损伤时对局部肾素-血管紧张素系统的影响 [J]. 中国医药导报, 2018, 15(2): 9-12,35.
[10]
高逸之1 王志良2▲ 李超男1 徐恒仕2. 心肌梗死合并糖尿病患者血栓弹力图变化探讨 [J]. 中国医药导报, 2018, 15(2): 50-53.
[11]
陈骅 刘昕▲. 重组人脑利钠肽对急性前壁心梗急诊经皮冠状动脉介入术后心室重塑和心功能的影响 [J]. 中国医药导报, 2018, 15(2): 58-61.
[12]
王文斌 菅宏伟 程国杰 唐学弘 李馨. 血小板参数对急性心肌梗死患者急诊介入治疗后主要不良心脏事件的影响 [J]. 中国医药导报, 2018, 15(17): 48-51.
[13]
刘振峰 梁治权 邓迎杰 方锐 孟庆才. 骨性关节炎中lncRNA MEG3的表达及其与VEGF的相关性分析 [J]. 中国医药导报, 2018, 15(16): 8-12.
[14]
汤红平1 钟琳2 姜辉1 高慧军1 陈莹莹1. lncRNA ANRIL在乳腺癌中的作用及机制研究 [J]. 中国医药导报, 2018, 15(16): 17-20.
[15]
王善志1 朱永俊1 叶凤1▲ 李国铨1 韦传娃1 韩锋2 梁海琴1 钟良宝1. 慢性肾脏病3~5期患者的血清超敏cTnI水平及其与肾脏相关指标的关系 [J]. 中国医药导报, 2018, 15(15): 69-71.