MicroRNA及lncRNA在心肌纤维化中的研究进展
高雨秋 焦磊 张莹
哈尔滨医科大学药学院药理学教研室 心血管药物研究教育部重点实验室,黑龙江哈尔滨 150086
Research progress of microRNA and lncRNA in myocardial fibrosis
GAO Yuqiu JIAO Lei ZHANG Ying
Department of Pharmacology, College of Pharmacy, Harbin Medical University Key Laboratory of Cardiovascular Medicine Research, Heilongjiang Province, Harbin 150086, China
摘要 心肌纤维化是指心肌组织结构中胶原纤维过度积聚的过程。近年来,非编码RNA包括小RNA(miRNA)和长链非编码RNA(lncRNA)对心肌纤维化的调控作用逐渐成为研究热点。miRNA及lncRNA通过多种信号通路及机制调控心肌纤维化的发生和发展。本文对近年来miRNA和lncRNA在心肌纤维化中的机制及研究进展进行了综述。
关键词 :
心肌纤维化 ,
非编码小RNA ,
长链非编码RNA ,
信号通路
Abstract :Myocardial fibrosis is the process of excessive accumulation of collagen fibers in myocardial tissue. In recent years, the role of non coding RNA including small RNA (miRNA) and long non-coding RNA (lncRNA), has become a hot topic. miRNA and lncRNA regulate the occurrence and development of myocardial fibrosis by activating multiple signaling pathways and mechanisms. This article reviews the mechanism and research progress of miRNA and lncRNA in myocardial fibrosis.
Key words :
Myocardial fibrosis
Micro RNA
lncRNA
Signaling pathway
基金资助: 国家自然科学基金资助项目(81670238、8147 0490)。
通讯作者:
张莹(1980.3-),女,博士,教授,硕士研究生导师,主要从事心血管药理学研究。
作者简介 : 高雨秋(1992.9-),女,哈尔滨医科大学药学院2015级药理学专业在读硕士研究生,主要从事心血管药理学研究。
[1] Travers JG,Kamal FA,Robbins J,et al. Cardiac fibrosis: the fibroblast awakens[J]. Circ Res,2016,118(6):1021-1040.
[2] Bartel DP. MicroRNAs:target recognition and regulatory functions [J]. Cell,2009,136(2):215-233.
[3] Kawamata T,Seitz H,Tomari Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding [J]. Nat Struct Mol Biol,2009,16(9):953-960.
[4] Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function [J]. Cell,2004,116(2):281-297.
[5] Ul Hussain M. Micro-RNAs(miRNAs):genomic organisation,biogenesis and mode of action [J]. Cell Tissue Res,2012,349(2):405-413.
[6] Geisler S,Coller J. RNA in unexpected places:long non-coding RNA functions in diverse cellular contexts [J]. Nat Rev Mol Cell Biol,2013,14(11):699-712.
[7] Quinodoz S,Guttman M. Long noncoding RNAs:an emerging link between gene regulation and nuclear organization [J]. Trends Cell Biol,2014,24(11):651-663.
[8] Du W,Liang H,Gao X,et al. MicroRNA-328,a Potential Anti-Fibrotic Target in Cardiac Interstitial Fibrosis [J]. Cell Physiol Biochem,2016,39(3):827-836.
[9] Wang J,Huang W,Xu R,et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction [J]. J Cell Mol Med,2012,16(9):2150-2160.
[10] Chen Z,Lu S,Xu M,et al. Role of miR-24,Furin,and Transforming Growth Factor-beta1 Signal Pathway in Fibrosis After Cardiac Infarction [J]. Med Sci Monit,2017, 23:65-70.
[11] Guo C,Deng Y,Liu J,et al. Cardiomyocyte-specific role of miR-24 in promoting cell survival [J]. J Cell Mol Med,2015,19(1):103-112.
[12] Kumarswamy R,Volkmann I,Thum T. Regulation and function of miRNA-21 in health and disease [J]. RNA Biol,2011,8(5):706-713.
[13] Thum T,Gross C,Fiedler J,et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts [J]. Nature,2008,456(7224):980-984.
[14] Doka G,Radik M,Krenek P,et al. 1a.02:Microrna-208a and Its Host Gene Cardiac Myosin Heavy Chain Myh6 Are Involved in Hypertrophic Heart Dysfunction [J]. J Hypertens,2015,33 Suppl 1:e1.
[15] Wang BW,Wu GJ,Cheng WP,et al. MicroRNA-208a increases myocardial fibrosis via endoglin in volume overloading heart [J]. PLoS One,2014,9(1):e84188.
[16] Shyu KG,Wang BW,Cheng WP,et al. MicroRNA-208a Increases Myocardial Endoglin Expression and Myocardial Fibrosis in Acute Myocardial Infarction [J]. Can J Cardiol,2015,31(5):679-690.
[17] Wang K,Liu F,Zhou LY,et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489 [J]. Circ Res,2014,114(9):1377-1388.
[18] van Rooij E,Sutherland LB,Liu N,et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci USA,2006,103(48):18255-18260.
[19] Callis TE,Wang DZ. Taking microRNAs to heart [J]. Trends Mol Med,2008,14(6):254-260.
[20] Feng Y,Zou L,Si R,et al. Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury [J]. Am J Physiol Cell Physiol,2010,299(4):C760-C769.
[21] Li Y,Si R,Feng Y,et al. Myocardial ischemia activates an injurious innate immune signaling via cardiac heat shock protein 60 and Toll-like receptor 4 [J]. J Biol Chem,2011,286(36):31308-31319.
[22] Oka T,Akazawa H,Naito AT,et al. Angiogenesis and cardiac hypertrophy:maintenance of cardiac function and causative roles in heart failure [J]. Circ Res,2014,114(3):565-571.
[23] Gao WL,Liu M,Yang Y,et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1(NOMO1) [J]. RNA Biol,2012,9(7):1002-1010.
[24] Ferguson BS,Harrison BC,Jeong MY,et al. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy [J]. Proc Natl Acad Sci USA,2013,110(24):9806-9811.
[25] Tao H,Cao W,Yang JJ,et al. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis [J]. Cardiovasc Pathol,2016,25(5):381-389.
[26] Frade AF,Laugier L,Ferreira LR,et al. Myocardial Infarction-Associated Transcript,a Long Noncoding RNA,Is Overexpressed During Dilated Cardiomyopathy Due to Chronic Chagas Disease [J]. J Infect Dis,2016,214(1):161-165.
[27] Qu X,Song X,Yuan W,et al. Expression signature of lncRNAs and their potential roles in cardiac fibrosis of post-infarct mice [J]. Biosci Rep,2016,36(3). pii: e00337. doi: 10.1042/BSR20150278. Print 2016 Jul.
[1]
刘远识 徐细明 陈心 伍龙. 长链非编码RNA-LET在肿瘤中的研究进展 [J]. 中国医药导报, 2019, 16(9): 26-29,42.
[2]
姜彤伟1 郝珍珠2 王冰梅3 郭慧文2 朴星虎2 程祺2. 心肌缺血再灌注损伤中西医机制及相关药物治疗的研究进展 [J]. 中国医药导报, 2019, 16(9): 43-46,51.
[3]
刘丽珠1 刘薇2 樊琳2 郭俐宏1. 黄芪多糖对大鼠脑卒中后抑郁的影响 [J]. 中国医药导报, 2019, 16(7): 11-14.
[4]
贾汉旗 韩向东. Wnt信号通路在心血管疾病中的调控作用研究进展 [J]. 中国医药导报, 2019, 16(4): 51-54.
[5]
董晓红1 王悦阳2 贺紫薇3 尚艳琪3 梁慧3 顾媛媛4 周忠光4. 中医药调控脑缺血MAPK信号通路的研究进展 [J]. 中国医药导报, 2019, 16(4): 47-50,67.
[6]
傅文婷 江惠华 钟兴明 周冰燚 刘晓阳 刘兴章▲. Wnt信号通路与男性不育相关性的研究进展 [J]. 中国医药导报, 2019, 16(4): 72-74.
[7]
李亚芳 徐岷. 支架蛋白IQGAP3在肿瘤中的作用及研究进展 [J]. 中国医药导报, 2019, 16(14): 23-25,32.
[8]
王亚卉 李青松▲ 符之瑄 桂炎香 张斌. 眼表疾病中转化生长因子-■1/Smads信号通路的研究进展 [J]. 中国医药导报, 2019, 16(13): 50-53,65.
[9]
罗晓莉* 肖燕萍* 林颖烽* 崔兆磊 陈燕. 长链非编码RNA-UCA1对膀胱癌诊断价值的Meta分析 [J]. 中国医药导报, 2019, 16(11): 77-80,84.
[10]
唐元章 孙晨力 郭玉娜 杨立强 武百山 魏亚 倪家骧▲. 脊髓背角P物质、ERK1/CREB信号通路激活在大鼠椎间盘源性内脏痛形成机制中的作用 [J]. 中国医药导报, 2019, 16(10): 7-10.
[11]
熊琳 何晓琴 范黎 徐细明. Akt抑制剂MK-2206对肝癌细胞huh7生物学行为的影响及机制 [J]. 中国医药导报, 2019, 16(1): 8-11,15.
[12]
张芹 奥婷 肖淑英 许娜 张瑞华▲. 表皮生长因子受体-细胞外信号调节激酶信号通路在缺血性脑血管病中的相关研究进展 [J]. 中国医药导报, 2018, 15(9): 36-40.
[13]
陈兴1 成传访2 方燕龄1 宫雅南1 徐米清1. mTOR信号通路在心肌肥大中的作用 [J]. 中国医药导报, 2018, 15(7): 16-19.
[14]
王广欢1 陈凯洪1 钟军1 王富生1 许陈斌1 蒋学武2. 环境雌激素对新生仔鼠睾丸引带中Notch信号通路的影响 [J]. 中国医药导报, 2018, 15(33): 17-20,24.
[15]
张海涛 林文勇 王肖龙 解曼曼 王英杰. lncRNA与心血管疾病的研究进展 [J]. 中国医药导报, 2018, 15(31): 53-55,59.